亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Although Large Language Models (LLMs) have made significant progress in code generation, they still struggle with code generation tasks in specific scenarios. These scenarios usually necessitate the adaptation of LLMs to fulfill specific needs, but the limited training data available in practice leads to poor code generation performance. How to effectively adapt LLMs to new scenarios with fewer training samples is a major challenge for current code generation. In this paper, we propose a novel adaptation approach named SEED, which stands for Sample-Efficient adaptation with Error-Driven learning for code generation. SEED leverages the errors made by LLMs as learning opportunities, using error revision to overcome its own shortcomings, thus achieving efficient learning. Specifically, SEED involves identifying error code generated by LLMs, employing Self-revise for code revision, optimizing the model with revised code, and iteratively adapting the process for continuous improvement. Experimental results show that, compared to traditional fine-tuning approaches, SEED achieves superior performance with fewer training samples, showing a relative improvement of 27.2%-325.0% in Pass@1. We also validate the effectiveness of Self-revise, which generates revised code that optimizes the model more efficiently compared to the code samples from datasets. Moreover, SEED consistently demonstrates strong performance across various LLMs, underscoring its generalizability.

相關內容

代(dai)碼(ma)(Code)是專知(zhi)網(wang)的一(yi)個重要知(zhi)識資料(liao)文(wen)(wen)檔板塊,旨在整理收錄(lu)論(lun)文(wen)(wen)源代(dai)碼(ma)、復現(xian)代(dai)碼(ma),經典工(gong)程代(dai)碼(ma)等,便(bian)于用戶(hu)查(cha)閱下載(zai)使(shi)用。

Many distributed training techniques like Parameter Server and AllReduce have been proposed to take advantage of the increasingly large data and rich features. However, stragglers frequently occur in distributed training due to resource contention and hardware heterogeneity, which significantly hampers the training efficiency. Previous works only address part of the stragglers and could not adaptively solve various stragglers in practice. Additionally, it is challenging to use a systematic framework to address all stragglers because different stragglers require diverse data allocation and fault-tolerance mechanisms. Therefore, this paper proposes a unified distributed training framework called AntDT (Ant Distributed Training Framework) to adaptively solve the straggler problems. Firstly, the framework consists of four components, including the Stateful Dynamic Data Sharding service, Monitor, Controller, and Agent. These components work collaboratively to efficiently distribute workloads and provide a range of pre-defined straggler mitigation methods with fault tolerance, thereby hiding messy details of data allocation and fault handling. Secondly, the framework provides a high degree of flexibility, allowing for the customization of straggler mitigation solutions based on the specific circumstances of the cluster. Leveraging this flexibility, we introduce two straggler mitigation solutions, namely AntDT-ND for non-dedicated clusters and AntDT-DD for dedicated clusters, as practical examples to resolve various types of stragglers at Ant Group. Justified by our comprehensive experiments and industrial deployment statistics, AntDT outperforms other SOTA methods more than 3x in terms of training efficiency. Additionally, in Alipay's homepage recommendation scenario, using AntDT reduces the training duration of the ranking model from 27.8 hours to just 5.4 hours.

Vision Language Models (VLMs) have undergone a rapid evolution, giving rise to significant advancements in the realm of multimodal understanding tasks. However, the majority of these models are trained and evaluated on English-centric datasets, leaving a gap in the development and evaluation of VLMs for other languages, such as Japanese. This gap can be attributed to the lack of methodologies for constructing VLMs and the absence of benchmarks to accurately measure their performance. To address this issue, we introduce a novel benchmark, Japanese Heron-Bench, for evaluating Japanese capabilities of VLMs. The Japanese Heron-Bench consists of a variety of imagequestion answer pairs tailored to the Japanese context. Additionally, we present a baseline Japanese VLM that has been trained with Japanese visual instruction tuning datasets. Our Heron-Bench reveals the strengths and limitations of the proposed VLM across various ability dimensions. Furthermore, we clarify the capability gap between strong closed models like GPT-4V and the baseline model, providing valuable insights for future research in this domain. We release the benchmark dataset and training code to facilitate further developments in Japanese VLM research.

Transformer-based Language Models have become ubiquitous in Natural Language Processing (NLP) due to their impressive performance on various tasks. However, expensive training as well as inference remains a significant impediment to their widespread applicability. While enforcing sparsity at various levels of the model architecture has found promise in addressing scaling and efficiency issues, there remains a disconnect between how sparsity affects network topology. Inspired by brain neuronal networks, we explore sparsity approaches through the lens of network topology. Specifically, we exploit mechanisms seen in biological networks, such as preferential attachment and redundant synapse pruning, and show that principled, model-agnostic sparsity approaches are performant and efficient across diverse NLP tasks, spanning both classification (such as natural language inference) and generation (summarization, machine translation), despite our sole objective not being optimizing performance. NeuroPrune is competitive with (or sometimes superior to) baselines on performance and can be up to $10$x faster in terms of training time for a given level of sparsity, simultaneously exhibiting measurable improvements in inference time in many cases.

This work proposes Autonomous Iterative Motion Learning (AI-MOLE), a method that enables systems with unknown, nonlinear dynamics to autonomously learn to solve reference tracking tasks. The method iteratively applies an input trajectory to the unknown dynamics, trains a Gaussian process model based on the experimental data, and utilizes the model to update the input trajectory until desired tracking performance is achieved. Unlike existing approaches, the proposed method determines necessary parameters automatically, i.e., AI-MOLE works plug-and-play and without manual parameter tuning. Furthermore, AI-MOLE only requires input/output information, but can also exploit available state information to accelerate learning. While other approaches are typically only validated in simulation or on a single real-world testbed using manually tuned parameters, we present the unprecedented result of validating the proposed method on three different real-world robots and a total of nine different reference tracking tasks without requiring any a priori model information or manual parameter tuning. Over all systems and tasks, AI-MOLE rapidly learns to track the references without requiring any manual parameter tuning at all, even if only input/output information is available.

Advanced Persistent Threat (APT) is challenging to detect due to prolonged duration, infrequent occurrence, and adept concealment techniques. Existing approaches primarily concentrate on the observable traits of attack behaviors, neglecting the intricate relationships formed throughout the persistent attack lifecycle. Thus, we present an innovative APT detection framework named LTRDetector, implementing an end-to-end holistic operation. LTRDetector employs an innovative graph embedding technique to retain comprehensive contextual information, then derives long-term features from these embedded provenance graphs. During the process, we compress the data of the system provenance graph for effective feature learning. Furthermore, in order to detect attacks conducted by using zero-day exploits, we captured the system's regular behavior and detects abnormal activities without relying on predefined attack signatures. We also conducted extensive evaluations using five prominent datasets, the efficacy evaluation of which underscores the superiority of LTRDetector compared to existing state-of-the-art techniques.

In recent years, Graph Neural Networks (GNNs) have ignited a surge of innovation, significantly enhancing the processing of geometric data structures such as graphs, point clouds, and meshes. As the domain continues to evolve, a series of frameworks and libraries are being developed to push GNN efficiency to new heights. While graph-centric libraries have achieved success in the past, the advent of efficient tensor compilers has highlighted the urgent need for tensor-centric libraries. Yet, efficient tensor-centric frameworks for GNNs remain scarce due to unique challenges and limitations encountered when implementing segment reduction in GNN contexts. We introduce GeoT, a cutting-edge tensor-centric library designed specifically for GNNs via efficient segment reduction. GeoT debuts innovative parallel algorithms that not only introduce new design principles but also expand the available design space. Importantly, GeoT is engineered for straightforward fusion within a computation graph, ensuring compatibility with contemporary tensor-centric machine learning frameworks and compilers. Setting a new performance benchmark, GeoT marks a considerable advancement by showcasing an average operator speedup of 1.80x and an end-to-end speedup of 1.68x.

Text-to-Image (T2I) diffusion models have achieved remarkable success in image generation. Despite their progress, challenges remain in both prompt-following ability, image quality and lack of high-quality datasets, which are essential for refining these models. As acquiring labeled data is costly, we introduce AGFSync, a framework that enhances T2I diffusion models through Direct Preference Optimization (DPO) in a fully AI-driven approach. AGFSync utilizes Vision-Language Models (VLM) to assess image quality across style, coherence, and aesthetics, generating feedback data within an AI-driven loop. By applying AGFSync to leading T2I models such as SD v1.4, v1.5, and SDXL, our extensive experiments on the TIFA dataset demonstrate notable improvements in VQA scores, aesthetic evaluations, and performance on the HPSv2 benchmark, consistently outperforming the base models. AGFSync's method of refining T2I diffusion models paves the way for scalable alignment techniques.

Optical proximity correction (OPC) is a vital step to ensure printability in modern VLSI manufacturing. Various OPC approaches based on machine learning have been proposed to pursue performance and efficiency, which are typically data-driven and hardly involve any particular considerations of the OPC problem, leading to potential performance or efficiency bottlenecks. In this paper, we propose CAMO, a reinforcement learning-based OPC system that specifically integrates important principles of the OPC problem. CAMO explicitly involves the spatial correlation among the movements of neighboring segments and an OPC-inspired modulation for movement action selection. Experiments are conducted on both via layer patterns and metal layer patterns. The results demonstrate that CAMO outperforms state-of-the-art OPC engines from both academia and industry.

How to evaluate Large Language Models (LLMs) in code generation is an open question. Existing benchmarks demonstrate poor alignment with real-world code repositories and are insufficient to evaluate the coding abilities of LLMs. This paper proposes a new benchmark - EvoCodeBench to address the preceding problems, which has three primary advances. (1) EvoCodeBench aligns with real-world repositories in multiple dimensions, e.g., code distributions and dependency distributions. (2) EvoCodeBench offers comprehensive annotations (e.g., requirements, reference code, and reference dependencies), and robust evaluation metrics (e.g., Pass@k and Recall@k). (3) EvoCodeBench is an evolving benchmark to avoid data leakage. We build an automatic pipeline to update EvoCodeBench from the latest repositories. We release the first version - EvoCodeBench-2403, containing 275 samples from 25 real-world repositories. Based on EvoCodeBench, we propose repository-level code generation and evaluate 10 popular LLMs (e.g., gpt-4, gpt-3.5, DeepSeek Coder, StarCoder 2, CodeLLaMa, Gemma, and Qwen 1.5). Our experiments reveal the coding abilities of these LLMs in real-world repositories. For example, the highest Pass@1 of gpt-4 only is 20.73% in our experiments. We also analyze failed cases and summarize the shortcomings of existing LLMs in EvoCodeBench. We release EvoCodeBench, all prompts, and LLMs' completions for further community analysis.

Imitation Learning (IL), also referred to as Learning from Demonstration (LfD), holds significant promise for capturing expert motor skills through efficient imitation, facilitating adept navigation of complex scenarios. A persistent challenge in IL lies in extending generalization from historical demonstrations, enabling the acquisition of new skills without re-teaching. Dynamical system-based IL (DSIL) emerges as a significant subset of IL methodologies, offering the ability to learn trajectories via movement primitives and policy learning based on experiential abstraction. This paper emphasizes the fusion of theoretical paradigms, integrating control theory principles inherent in dynamical systems into IL. This integration notably enhances robustness, adaptability, and convergence in the face of novel scenarios. This survey aims to present a comprehensive overview of DSIL methods, spanning from classical approaches to recent advanced approaches. We categorize DSIL into autonomous dynamical systems and non-autonomous dynamical systems, surveying traditional IL methods with low-dimensional input and advanced deep IL methods with high-dimensional input. Additionally, we present and analyze three main stability methods for IL: Lyapunov stability, contraction theory, and diffeomorphism mapping. Our exploration also extends to popular policy improvement methods for DSIL, encompassing reinforcement learning, deep reinforcement learning, and evolutionary strategies.

北京阿比特科技有限公司