亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Training networks consisting of biophysically accurate neuron models could allow for new insights into how brain circuits can organize and solve tasks. We begin by analyzing the extent to which the central algorithm for neural network learning -- stochastic gradient descent through backpropagation (BP) -- can be used to train such networks. We find that properties of biophysically based neural network models needed for accurate modelling such as stiffness, high nonlinearity and long evaluation timeframes relative to spike times makes BP unstable and divergent in a variety of cases. To address these instabilities and inspired by recent work, we investigate the use of "gradient-estimating" evolutionary algorithms (EAs) for training biophysically based neural networks. We find that EAs have several advantages making them desirable over direct BP, including being forward-pass only, robust to noisy and rigid losses, allowing for discrete loss formulations, and potentially facilitating a more global exploration of parameters. We apply our method to train a recurrent network of Morris-Lecar neuron models on a stimulus integration and working memory task, and show how it can succeed in cases where direct BP is inapplicable. To expand on the viability of EAs in general, we apply them to a general neural ODE problem and a stiff neural ODE benchmark and find again that EAs can out-perform direct BP here, especially for the over-parameterized regime. Our findings suggest that biophysical neurons could provide useful benchmarks for testing the limits of BP-adjacent methods, and demonstrate the viability of EAs for training networks with complex components.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Previous probabilistic models for 3D Human Pose Estimation (3DHPE) aimed to enhance pose accuracy by generating multiple hypotheses. However, most of the hypotheses generated deviate substantially from the true pose. Compared to deterministic models, the excessive uncertainty in probabilistic models leads to weaker performance in single-hypothesis prediction. To address these two challenges, we propose a diffusion-based refinement framework called DRPose, which refines the output of deterministic models by reverse diffusion and achieves more suitable multi-hypothesis prediction for the current pose benchmark by multi-step refinement with multiple noises. To this end, we propose a Scalable Graph Convolution Transformer (SGCT) and a Pose Refinement Module (PRM) for denoising and refining. Extensive experiments on Human3.6M and MPI-INF-3DHP datasets demonstrate that our method achieves state-of-the-art performance on both single and multi-hypothesis 3DHPE. Code is available at //github.com/KHB1698/DRPose.

Knowledge Representation (KR) and facet-analytical Knowledge Organization (KO) have been the two most prominent methodologies of data and knowledge modelling in the Artificial Intelligence community and the Information Science community, respectively. KR boasts of a robust and scalable ecosystem of technologies to support knowledge modelling while, often, underemphasizing the quality of its models (and model-based data). KO, on the other hand, is less technology-driven but has developed a robust framework of guiding principles (canons) for ensuring modelling (and model-based data) quality. This paper elucidates both the KR and facet-analytical KO methodologies in detail and provides a functional mapping between them. Out of the mapping, the paper proposes an integrated KO-enriched KR methodology with all the standard components of a KR methodology plus the guiding canons of modelling quality provided by KO. The practical benefits of the methodological integration has been exemplified through a prominent case study of KR-based image annotation exercise.

We introduce a simple initialization of the Maubach bisection routine for adaptive mesh refinement which applies to any conforming initial triangulation. Using Maubach's routine with this initialization generates meshes that preserve shape regularity and satisfy the closure estimate needed for optimal convergence of adaptive schemes. Our ansatz allows for the intrinsic use of existing implementations.

Speech emotion conversion is the task of converting the expressed emotion of a spoken utterance to a target emotion while preserving the lexical content and speaker identity. While most existing works in speech emotion conversion rely on acted-out datasets and parallel data samples, in this work we specifically focus on more challenging in-the-wild scenarios and do not rely on parallel data. To this end, we propose a diffusion-based generative model for speech emotion conversion, the EmoConv-Diff, that is trained to reconstruct an input utterance while also conditioning on its emotion. Subsequently, at inference, a target emotion embedding is employed to convert the emotion of the input utterance to the given target emotion. As opposed to performing emotion conversion on categorical representations, we use a continuous arousal dimension to represent emotions while also achieving intensity control. We validate the proposed methodology on a large in-the-wild dataset, the MSP-Podcast v1.10. Our results show that the proposed diffusion model is indeed capable of synthesizing speech with a controllable target emotion. Crucially, the proposed approach shows improved performance along the extreme values of arousal and thereby addresses a common challenge in the speech emotion conversion literature.

Anomaly detection on attributed networks aims to find the nodes whose behaviors are significantly different from other majority nodes. Generally, network data contains information about relationships between entities, and the anomaly is usually embodied in these relationships. Therefore, how to comprehensively model complex interaction patterns in networks is still a major focus. It can be observed that anomalies in networks violate the homophily assumption. However, most existing studies only considered this phenomenon obliquely rather than explicitly. Besides, the node representation of normal entities can be perturbed easily by the noise relationships introduced by anomalous nodes. To address the above issues, we present a novel contrastive learning framework for anomaly detection on attributed networks, \textbf{SCALA}, aiming to improve the embedding quality of the network and provide a new measurement of qualifying the anomaly score for each node by introducing sparsification into the conventional method. Extensive experiments are conducted on five benchmark real-world datasets and the results show that SCALA consistently outperforms all baseline methods significantly.

Human trajectory forecasting is a critical challenge in fields such as robotics and autonomous driving. Due to the inherent uncertainty of human actions and intentions in real-world scenarios, various unexpected occurrences may arise. To uncover latent motion patterns in human behavior, we introduce a novel memory-based method, named Motion Pattern Priors Memory Network. Our method involves constructing a memory bank derived from clustered prior knowledge of motion patterns observed in the training set trajectories. We introduce an addressing mechanism to retrieve the matched pattern and the potential target distributions for each prediction from the memory bank, which enables the identification and retrieval of natural motion patterns exhibited by agents, subsequently using the target priors memory token to guide the diffusion model to generate predictions. Extensive experiments validate the effectiveness of our approach, achieving state-of-the-art trajectory prediction accuracy. The code will be made publicly available.

A new nonparametric estimator for Toeplitz covariance matrices is proposed. This estimator is based on a data transformation that translates the problem of Toeplitz covariance matrix estimation to the problem of mean estimation in an approximate Gaussian regression. The resulting Toeplitz covariance matrix estimator is positive definite by construction, fully data-driven and computationally very fast. Moreover, this estimator is shown to be minimax optimal under the spectral norm for a large class of Toeplitz matrices. These results are readily extended to estimation of inverses of Toeplitz covariance matrices. Also, an alternative version of the Whittle likelihood for the spectral density based on the Discrete Cosine Transform (DCT) is proposed. The method is implemented in the R package vstdct that accompanies the paper.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司