亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cell-free massive MIMO is one of the core technologies for future wireless networks. It is expected to bring enormous benefits, including ultra-high reliability, data throughput, energy efficiency, and uniform coverage. As a radically distributed system, the performance of cell-free massive MIMO critically relies on efficient distributed processing algorithms. In this paper, we propose a distributed expectation propagation (EP) detector for cell-free massive MIMO, which consists of two modules: a nonlinear module at the central processing unit (CPU) and a linear module at each access point (AP). The turbo principle in iterative channel decoding is utilized to compute and pass the extrinsic information between the two modules. An analytical framework is provided to characterize the asymptotic performance of the proposed EP detector with a large number of antennas. Furthermore, a distributed joint channel estimation and data detection (JCD) algorithm is developed to handle the practical setting with imperfect channel state information (CSI). Simulation results will show that the proposed method outperforms existing detectors for cell-free massive MIMO systems in terms of the bit-error rate and demonstrate that the developed theoretical analysis accurately predicts system performance. Finally, it is shown that with imperfect CSI, the proposed JCD algorithm improves the system performance significantly and enables non-orthogonal pilots to reduce the pilot overhead.

相關內容

Deep multi-task methods, where several tasks are learned within a single network, have recently attracted increasing attention. Burning point of this attention is their capacity to capture inter-task relationships. Current approaches either only rely on weight sharing, or add explicit dependency modelling by decomposing the task joint distribution using Bayes chain rule. If the latter strategy yields comprehensive inter-task relationships modelling, it requires imposing an arbitrary order into an unordered task set. Most importantly, this sequence ordering choice has been identified as a critical source of performance variations. In this paper, we present Multi-Order Network (MONET), a multi-task learning method with joint task order optimization. MONET uses a differentiable order selection based on soft order modelling inside Birkhoff's polytope to jointly learn task-wise recurrent modules with their optimal chaining order. Furthermore, we introduce warm up and order dropout to enhance order selection by encouraging order exploration. Experimentally, we first validate MONET capacity to retrieve the optimal order in a toy environment. Second, we use an attribute detection scenario to show that MONET outperforms existing multi-task baselines on a wide range of dependency settings. Finally, we demonstrate that MONET significantly extends state-of-the-art performance in Facial Action Unit detection.

This work addresses the finite-time enclosing control problem where a set of followers are deployed to encircle and rotate around multiple moving targets with a predefined spacing pattern in finite time. A novel distributed and continuous estimator is firstly proposed to track the geometric center of targets in finite time using only local information for every follower. Then a pair of decentralized control laws for both the relative distance and included angle, respectively, are designed to achieve the desired spacing pattern in finite time based on the output of the proposed estimator. Through both theoretical analysis and simulation validation, we show that the proposed estimator is continuous and therefore can avoid dithering control output while still inheriting the merit of finite-time convergence. The steady errors of the estimator and the enclosing controller are guaranteed to converge to some bounded and adjustable regions around zero.

Modern wireless cellular networks use massive multiple-input multiple-output (MIMO) technology. This technology involves operations with an antenna array at a base station that simultaneously serves multiple mobile devices which also use multiple antennas on their side. For this, various precoding and detection techniques are used, allowing each user to receive the signal intended for him from the base station. There is an important class of linear precoding called Regularized Zero-Forcing (RZF). In this work, we propose Adaptive RZF (ARZF) with a special kind of regularization matrix with different coefficients for each layer of multi-antenna users. These regularization coefficients are defined by explicit formulas based on SVD decompositions of user channel matrices. We study the optimization problem, which is solved by the proposed algorithm, with the connection to other possible problem statements. We also compare the proposed algorithm with state-of-the-art linear precoding algorithms on simulations with the Quadriga channel model. The proposed approach provides a significant increase in quality with the same computation time as in the reference methods.

This paper investigates the uplink (UL) transmit design for massive multiple-input multiple-output (MIMO) low-earth-orbit (LEO) satellite communication (SATCOM), where the long-term statistical channel state information is utilized at the user terminals (UTs). We consider that the uniform planar arrays are deployed at both the satellite and UTs, and derive the UL massive MIMO LEO satellite channel model. With the aim to achieve the ergodic sum rate capacity, we show that the rank of each UT's optimal transmit covariance matrix does not exceed that of its channel correlation matrix at the UT sides. This reveals the maximum number of independent data streams that can be transmitted from each UT to the satellite. We further show that the design of the transmit covariance matrices can be reduced into that of lower-dimensional matrices, for which a stochastic programming based algorithm is developed by exploiting the optimal lower-dimensional matrices' structure. To reduce the computational complexity, we invoke the asymptotic programming and develop a computationally efficient algorithm to compute the transmit covariance matrices. Simulations show that the proposed UL transmit strategies are superior to the conventional schemes, and the low-complexity asymptotic programming based UL transmit design can attain near-optimal performance in massive MIMO LEO SATCOM.

This paper presents a novel channel estimation technique for the multi-user massive multiple-input multiple-output (MU-mMIMO) systems using angular-based hybrid precoding (AB-HP). The proposed channel estimation technique generates group-wise channel state information (CSI) of user terminal (UT) zones in the service area by deep neural networks (DNN) and fuzzy c-Means (FCM) clustering. The slow time-varying CSI between the base station (BS) and feasible UT locations in the service area is calculated from the geospatial data by offline ray tracing and a DNN-based path estimation model associated with the 1-dimensional convolutional neural network (1D-CNN) and regression tree ensembles. Then, the UT-level CSI of all feasible locations is grouped into clusters by a proposed FCM clustering. Finally, the service area is divided into a number of non-overlapping UT zones. Each UT zone is characterized by a corresponding set of clusters named as UT-group CSI, which is utilized in the analog RF beamformer design of AB-HP to reduce the required large online CSI overhead in the MU-mMIMO systems. Then, the reduced-size online CSI is employed in the baseband (BB) precoder of AB-HP. Simulations are conducted in the indoor scenario at 28 GHz and tested in an AB-HP MU-mMIMO system with a uniform rectangular array (URA) having 16x16=256 antennas and 22 RF chains. Illustrative results indicate that 91.4% online CSI can be reduced by using the proposed offline channel estimation technique as compared to the conventional online channel sounding. The proposed DNN-based path estimation technique produces same amount of UT-level CSI with runtime reduced by 65.8% as compared to the computationally expensive ray tracing.

We propose a \emph{collaborative} multi-agent reinforcement learning algorithm named variational policy propagation (VPP) to learn a \emph{joint} policy through the interactions over agents. We prove that the joint policy is a Markov Random Field under some mild conditions, which in turn reduces the policy space effectively. We integrate the variational inference as special differentiable layers in policy such that the actions can be efficiently sampled from the Markov Random Field and the overall policy is differentiable. We evaluate our algorithm on several large scale challenging tasks and demonstrate that it outperforms previous state-of-the-arts.

Despite the success of Knowledge Distillation (KD) on image classification, it is still challenging to apply KD on object detection due to the difficulty in locating knowledge. In this paper, we propose an instance-conditional distillation framework to find desired knowledge. To locate knowledge of each instance, we use observed instances as condition information and formulate the retrieval process as an instance-conditional decoding process. Specifically, information of each instance that specifies a condition is encoded as query, and teacher's information is presented as key, we use the attention between query and key to measure the correlation, formulated by the transformer decoder. To guide this module, we further introduce an auxiliary task that directs to instance localization and identification, which are fundamental for detection. Extensive experiments demonstrate the efficacy of our method: we observe impressive improvements under various settings. Notably, we boost RetinaNet with ResNet-50 backbone from 37.4 to 40.7 mAP (+3.3) under 1x schedule, that even surpasses the teacher (40.4 mAP) with ResNet-101 backbone under 3x schedule. Code will be released soon.

In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.

There is growing interest in object detection in advanced driver assistance systems and autonomous robots and vehicles. To enable such innovative systems, we need faster object detection. In this work, we investigate the trade-off between accuracy and speed with domain-specific approximations, i.e. category-aware image size scaling and proposals scaling, for two state-of-the-art deep learning-based object detection meta-architectures. We study the effectiveness of applying approximation both statically and dynamically to understand the potential and the applicability of them. By conducting experiments on the ImageNet VID dataset, we show that domain-specific approximation has great potential to improve the speed of the system without deteriorating the accuracy of object detectors, i.e. up to 7.5x speedup for dynamic domain-specific approximation. To this end, we present our insights toward harvesting domain-specific approximation as well as devise a proof-of-concept runtime, AutoFocus, that exploits dynamic domain-specific approximation.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司