亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, a novel framework is established for uncertainty quantification via information bottleneck (IB-UQ) for scientific machine learning tasks, including deep neural network (DNN) regression and neural operator learning (DeepONet). Specifically, we first employ the General Incompressible-Flow Networks (GIN) model to learn a "wide" distribution fromnoisy observation data. Then, following the information bottleneck objective, we learn a stochastic map from input to some latent representation that can be used to predict the output. A tractable variational bound on the IB objective is constructed with a normalizing flow reparameterization. Hence, we can optimize the objective using the stochastic gradient descent method. IB-UQ can provide both mean and variance in the label prediction by explicitly modeling the representation variables. Compared to most DNN regression methods and the deterministic DeepONet, the proposed model can be trained on noisy data and provide accurate predictions with reliable uncertainty estimates on unseen noisy data. We demonstrate the capability of the proposed IB-UQ framework via several representative examples, including discontinuous function regression, real-world dataset regression and learning nonlinear operators for diffusion-reaction partial differential equation.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 不確定 · 不確定性 · 域自適應 · 自適應 ·
2023 年 3 月 30 日

Universal domain adaptation (UniDA) aims to transfer the knowledge from a labeled source domain to an unlabeled target domain without any assumptions of the label sets, which requires distinguishing the unknown samples from the known ones in the target domain. A main challenge of UniDA is that the nonidentical label sets cause the misalignment between the two domains. Moreover, the domain discrepancy and the supervised objectives in the source domain easily lead the whole model to be biased towards the common classes and produce overconfident predictions for unknown samples. To address the above challenging problems, we propose a new uncertainty-guided UniDA framework. Firstly, we introduce an empirical estimation of the probability of a target sample belonging to the unknown class which fully exploits the distribution of the target samples in the latent space. Then, based on the estimation, we propose a novel neighbors searching scheme in a linear subspace with a $\delta$-filter to estimate the uncertainty score of a target sample and discover unknown samples. It fully utilizes the relationship between a target sample and its neighbors in the source domain to avoid the influence of domain misalignment. Secondly, this paper well balances the confidences of predictions for both known and unknown samples through an uncertainty-guided margin loss based on the confidences of discovered unknown samples, which can reduce the gap between the intra-class variances of known classes with respect to the unknown class. Finally, experiments on three public datasets demonstrate that our method significantly outperforms existing state-of-the-art methods.

Data-driven approaches coupled with physical knowledge are powerful techniques to model systems. The goal of such models is to efficiently solve for the underlying field by combining measurements with known physical laws. As many systems contain unknown elements, such as missing parameters, noisy data, or incomplete physical laws, this is widely approached as an uncertainty quantification problem. The common techniques to handle all the variables typically depend on the numerical scheme used to approximate the posterior, and it is desirable to have a method which is independent of any such discretization. Information field theory (IFT) provides the tools necessary to perform statistics over fields that are not necessarily Gaussian. We extend IFT to physics-informed IFT (PIFT) by encoding the functional priors with information about the physical laws which describe the field. The posteriors derived from this PIFT remain independent of any numerical scheme and can capture multiple modes, allowing for the solution of problems which are ill-posed. We demonstrate our approach through an analytical example involving the Klein-Gordon equation. We then develop a variant of stochastic gradient Langevin dynamics to draw samples from the joint posterior over the field and model parameters. We apply our method to numerical examples with various degrees of model-form error and to inverse problems involving nonlinear differential equations. As an addendum, the method is equipped with a metric which allows the posterior to automatically quantify model-form uncertainty. Because of this, our numerical experiments show that the method remains robust to even an incorrect representation of the physics given sufficient data. We numerically demonstrate that the method correctly identifies when the physics cannot be trusted, in which case it automatically treats learning the field as a regression problem.

This study introduces an approach to estimate the uncertainty in bibliometric indicator values that is caused by data errors. This approach utilizes Bayesian regression models, estimated from empirical data samples, which are used to predict error-free data. Through direct Monte Carlo simulation -- drawing predicted data from the estimated regression models a large number of times for the same input data -- probability distributions for indicator values can be obtained, which provide the information on their uncertainty due to data errors. It is demonstrated how uncertainty in base quantities, such as the number of publications of a unit of certain document types and the number of citations of a publication, can be propagated along a measurement model into final indicator values. This method can be used to estimate the uncertainty of indicator values due to sources of errors with known error distributions. The approach is demonstrated with simple synthetic examples for instructive purposes and real bibliometric research evaluation data to show its possible application in practice.

Long-run covariance matrix estimation is the building block of time series inference problems. The corresponding difference-based estimator, which avoids detrending, has attracted considerable interest due to its robustness to both smooth and abrupt structural breaks and its competitive finite sample performance. However, existing methods mainly focus on estimators for the univariate process while their direct and multivariate extensions for most linear models are asymptotically biased. We propose a novel difference-based and debiased long-run covariance matrix estimator for functional linear models with time-varying regression coefficients, allowing time series non-stationarity, long-range dependence, state-heteroscedasticity and their mixtures. We apply the new estimator to i) the structural stability test, overcoming the notorious non-monotonic power phenomena caused by piecewise smooth alternatives for regression coefficients, and (ii) the nonparametric residual-based tests for long memory, improving the performance via the residual-free formula of the proposed estimator. The effectiveness of the proposed method is justified theoretically and demonstrated by superior performance in simulation studies, while its usefulness is elaborated by means of real data analysis.

Optimal designs are usually model-dependent and likely to be sub-optimal if the postulated model is not correctly specified. In practice, it is common that a researcher has a list of candidate models at hand and a design has to be found that is efficient for selecting the true model among the competing candidates and is also efficient (optimal, if possible) for estimating the parameters of the true model. In this article, we use a reinforced learning approach to address this problem. We develop a sequential algorithm, which generates a sequence of designs which have asymptotically, as the number of stages increases, the same efficiency for estimating the parameters in the true model as an optimal design if the true model would have correctly been specified in advance. A lower bound is established to quantify the relative efficiency between such a design and an optimal design for the true model in finite stages. Moreover, the resulting designs are also efficient for discriminating between the true model and other rival models from the candidate list. Some connections with other state-of-the-art algorithms for model discrimination and parameter estimation are discussed and the methodology is illustrated by a small simulation study.

Deep ensemble is a simple and straightforward approach for approximating Bayesian inference and has been successfully applied to many classification tasks. This study aims to comprehensively investigate this approach in the multi-output regression task to predict the aerodynamic performance of a missile configuration. By scrutinizing the effect of the number of neural networks used in the ensemble, an obvious trend toward underconfidence in estimated uncertainty is observed. In this context, we propose the deep ensemble framework that applies the post-hoc calibration method, and its improved uncertainty quantification performance is demonstrated. It is compared with Gaussian process regression, the most prevalent model for uncertainty quantification in engineering, and is proven to have superior performance in terms of regression accuracy, reliability of estimated uncertainty, and training efficiency. Finally, the impact of the suggested framework on the results of Bayesian optimization is examined, showing that whether or not the deep ensemble is calibrated can result in completely different exploration characteristics. This framework can be seamlessly applied and extended to any regression task, as no special assumptions have been made for the specific problem used in this study.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

Invariant risk minimization (IRM) has recently emerged as a promising alternative for domain generalization. Nevertheless, the loss function is difficult to optimize for nonlinear classifiers and the original optimization objective could fail when pseudo-invariant features and geometric skews exist. Inspired by IRM, in this paper we propose a novel formulation for domain generalization, dubbed invariant information bottleneck (IIB). IIB aims at minimizing invariant risks for nonlinear classifiers and simultaneously mitigating the impact of pseudo-invariant features and geometric skews. Specifically, we first present a novel formulation for invariant causal prediction via mutual information. Then we adopt the variational formulation of the mutual information to develop a tractable loss function for nonlinear classifiers. To overcome the failure modes of IRM, we propose to minimize the mutual information between the inputs and the corresponding representations. IIB significantly outperforms IRM on synthetic datasets, where the pseudo-invariant features and geometric skews occur, showing the effectiveness of proposed formulation in overcoming failure modes of IRM. Furthermore, experiments on DomainBed show that IIB outperforms $13$ baselines by $0.9\%$ on average across $7$ real datasets.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

北京阿比特科技有限公司