亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Predictive business process monitoring aims at providing predictions about running instances by analyzing logs of completed cases in a business process. Recently, a lot of research focuses on increasing productivity and efficiency in a business process by forecasting potential problems during its executions. However, most of the studies lack suggesting concrete actions to improve the process. They leave it up to the subjective judgment of a user. In this paper, we propose a novel method to connect the results from predictive business process monitoring to actual business process improvements. More in detail, we optimize the resource allocation in a non-clairvoyant online environment, where we have limited information required for scheduling, by exploiting the predictions. The proposed method integrates the offline prediction model construction that predicts the processing time and the next activity of an ongoing instance using Bayesian Neural Networks (BNNs) with the online resource allocation that is extended from the minimum cost and maximum flow algorithm. To validate the proposed method, we performed experiments using an artificial event log and a real-life event log from a global financial organization.

相關內容

Processing 是一門開(kai)(kai)源編程語言和與之配套的(de)集成開(kai)(kai)發(fa)環境(IDE)的(de)名稱(cheng)。Processing 在電子(zi)藝術和視覺設計社(she)區被(bei)用來教授編程基礎,并運用于大量的(de)新媒(mei)體和互動(dong)藝術作品中。

Given a graph $G$ of degree $k$ over $n$ vertices, we consider the problem of computing a near maximum cut or a near minimum bisection in polynomial time. For graphs of girth $L$, we develop a local message passing algorithm whose complexity is $O(nkL)$, and that achieves near optimal cut values among all $L$-local algorithms. Focusing on max-cut, the algorithm constructs a cut of value $nk/4+ n\mathsf{P}_\star\sqrt{k/4}+\mathsf{err}(n,k,L)$, where $\mathsf{P}_\star\approx 0.763166$ is the value of the Parisi formula from spin glass theory, and $\mathsf{err}(n,k,L)=o_n(n)+no_k(\sqrt{k})+n \sqrt{k} o_L(1)$ (subscripts indicate the asymptotic variables). Our result generalizes to locally treelike graphs, i.e., graphs whose girth becomes $L$ after removing a small fraction of vertices. Earlier work established that, for random $k$-regular graphs, the typical max-cut value is $nk/4+ n\mathsf{P}_\star\sqrt{k/4}+o_n(n)+no_k(\sqrt{k})$. Therefore our algorithm is nearly optimal on such graphs. An immediate corollary of this result is that random regular graphs have nearly minimum max-cut, and nearly maximum min-bisection among all regular locally treelike graphs. This can be viewed as a combinatorial version of the near-Ramanujan property of random regular graphs.

Greater capabilities of mobile communications technology enable interconnection of on-site medical care at a scale previously unavailable. However, embedding such critical, demanding tasks into the already complex infrastructure of mobile communications proves challenging. This paper explores a resource allocation scenario where a scheduler must balance mixed performance metrics among connected users. To fulfill this resource allocation task, we present a scheduler that adaptively switches between different model-based scheduling algorithms. We make use of a deep Q-Network to learn the benefit of selecting a scheduling paradigm for a given situation, combining advantages from model-driven and data-driven approaches. The resulting ensemble scheduler is able to combine its constituent algorithms to maximize a sum-utility cost function while ensuring performance on designated high-priority users.

We consider the energy complexity of the leader election problem in the single-hop radio network model, where each device has a unique identifier in $\{1, 2, \ldots, N\}$. Energy is a scarce resource for small battery-powered devices. For such devices, most of the energy is often spent on communication, not on computation. To approximate the actual energy cost, the energy complexity of an algorithm is defined as the maximum over all devices of the number of time slots where the device transmits or listens. Much progress has been made in understanding the energy complexity of leader election in radio networks, but very little is known about the trade-off between time and energy. $\textbf{Time-energy trade-off:}$ For any $k \geq \log \log N$, we show that a leader among at most $n$ devices can be elected deterministically in $O(k \cdot n^{1+\epsilon}) + O(k \cdot N^{1/k})$ time and $O(k)$ energy if each device can simultaneously transmit and listen, where $\epsilon > 0$ is any small constant. This improves upon the previous $O(N)$-time $O(\log \log N)$-energy algorithm by Chang et al. [STOC 2017]. We provide lower bounds to show that the time-energy trade-off of our algorithm is near-optimal. $\textbf{Dense instances:}$ For the dense instances where the number of devices is $n = \Theta(N)$, we design a deterministic leader election algorithm using only $O(1)$ energy. This improves upon the $O(\log^* N)$-energy algorithm by Jurdzi\'{n}ski et al. [PODC 2002] and the $O(\alpha(N))$-energy algorithm by Chang et al. [STOC 2017]. More specifically, we show that the optimal deterministic energy complexity of leader election is $\Theta\left(\max\left\{1, \log \frac{N}{n}\right\}\right)$ if the devices cannot simultaneously transmit and listen, and it is $\Theta\left(\max\left\{1, \log \log \frac{N}{n}\right\}\right)$ if they can.

Data assimilation techniques are widely used to predict complex dynamical systems with uncertainties, based on time-series observation data. Error covariance matrices modelling is an important element in data assimilation algorithms which can considerably impact the forecasting accuracy. The estimation of these covariances, which usually relies on empirical assumptions and physical constraints, is often imprecise and computationally expensive especially for systems of large dimension. In this work, we propose a data-driven approach based on long short term memory (LSTM) recurrent neural networks (RNN) to improve both the accuracy and the efficiency of observation covariance specification in data assimilation for dynamical systems. Learning the covariance matrix from observed/simulated time-series data, the proposed approach does not require any knowledge or assumption about prior error distribution, unlike classical posterior tuning methods. We have compared the novel approach with two state-of-the-art covariance tuning algorithms, namely DI01 and D05, first in a Lorenz dynamical system and then in a 2D shallow water twin experiments framework with different covariance parameterization using ensemble assimilation. This novel method shows significant advantages in observation covariance specification, assimilation accuracy and computational efficiency.

We advance the state of the art in Mixed-Integer Linear Programming (MILP) formulations for Guillotine 2D Cutting Problems by (i) adapting a previously known reduction to our preprocessing phase and by (ii) enhancing a previous formulation by cutting down its size and symmetries. Our focus is the Guillotine 2D Knapsack Problem with orthogonal and unrestricted cuts, constrained demand, unlimited stages, and no rotation -- however, the formulation may be adapted to many related problems. The code is available. Concerning the set of 59 instances used to benchmark the original formulation, and summing the statistics for all models generated, the enhanced formulation has only a small fraction of the variables and constraints of the original model (respectively, 3.07% and 8.35%). The enhanced formulation also takes about 4 hours to solve all instances while the original formulation takes 12 hours to solve 53 of them (the other six runs hit a three-hour time limit each). We integrate, to both formulations, a pricing framework proposed for the original formulation; the enhanced formulation keeps a significant advantage in this situation. Finally, in a recently proposed set of 80 harder instances, the enhanced formulation (with and without the pricing framework) found: 22 optimal solutions for the unrestricted problem (5 already known, 17 new); 22 optimal solutions for the restricted problem (all are new and they are not the same 22 of the optimal unrestricted solutions); better lower bounds for 25 instances; better upper bounds for 58 instances.

Improving learning efficiency is paramount for learning resource allocation with deep neural networks (DNNs) in wireless communications over highly dynamic environments. Incorporating domain knowledge into learning is a promising way of dealing with this issue, which is an emerging topic in the wireless community. In this article, we first briefly summarize two classes of approaches to using domain knowledge: introducing mathematical models or prior knowledge to deep learning. Then, we consider a kind of symmetric prior, permutation equivariance, which widely exists in wireless tasks. To explain how such a generic prior is harnessed to improve learning efficiency, we resort to ranking, which jointly sorts the input and output of a DNN. We use power allocation among subcarriers, probabilistic content caching, and interference coordination to illustrate the improvement of learning efficiency by exploiting the property. From the case study, we find that the required training samples to achieve given system performance decreases with the number of subcarriers or contents, owing to an interesting phenomenon: "sample hardening". Simulation results show that the training samples, the free parameters in DNNs and the training time can be reduced dramatically by harnessing the prior knowledge. The samples required to train a DNN after ranking can be reduced by $15 \sim 2,400$ folds to achieve the same system performance as the counterpart without using prior.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

The process of translation is ambiguous, in that there are typically many valid trans- lations for a given sentence. This gives rise to significant variation in parallel cor- pora, however, most current models of machine translation do not account for this variation, instead treating the prob- lem as a deterministic process. To this end, we present a deep generative model of machine translation which incorporates a chain of latent variables, in order to ac- count for local lexical and syntactic varia- tion in parallel corpora. We provide an in- depth analysis of the pitfalls encountered in variational inference for training deep generative models. Experiments on sev- eral different language pairs demonstrate that the model consistently improves over strong baselines.

Tumor growth is associated with cell invasion and mass-effect, which are traditionally formulated by mathematical models, namely reaction-diffusion equations and biomechanics. Such models can be personalized based on clinical measurements to build the predictive models for tumor growth. In this paper, we investigate the possibility of using deep convolutional neural networks (ConvNets) to directly represent and learn the cell invasion and mass-effect, and to predict the subsequent involvement regions of a tumor. The invasion network learns the cell invasion from information related to metabolic rate, cell density and tumor boundary derived from multimodal imaging data. The expansion network models the mass-effect from the growing motion of tumor mass. We also study different architectures that fuse the invasion and expansion networks, in order to exploit the inherent correlations among them. Our network can easily be trained on population data and personalized to a target patient, unlike most previous mathematical modeling methods that fail to incorporate population data. Quantitative experiments on a pancreatic tumor data set show that the proposed method substantially outperforms a state-of-the-art mathematical model-based approach in both accuracy and efficiency, and that the information captured by each of the two subnetworks are complementary.

When deploying resource-intensive signal processing applications in wireless sensor or mesh networks, distributing processing blocks over multiple nodes becomes promising. Such distributed applications need to solve the placement problem (which block to run on which node), the routing problem (which link between blocks to map on which path between nodes), and the scheduling problem (which transmission is active when). We investigate a variant where the application graph may contain feedback loops and we exploit wireless networks? inherent multicast advantage. Thus, we propose Multicast-Aware Routing for Virtual network Embedding with Loops in Overlays (MARVELO) to find efficient solutions for scheduling and routing under a detailed interference model. We cast this as a mixed integer quadratically constrained optimisation problem and provide an efficient heuristic. Simulations show that our approach handles complex scenarios quickly.

北京阿比特科技有限公司