亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently substantial improvements in neural retrieval methods also bring to light the inherent blackbox nature of these methods, especially when viewed from an explainability perspective. Most of existing works on Search Result Explanation (SeRE) are designed to provide factual explanation, i.e. to find/generate supporting evidence about documents' relevance to search queries. However, research in cognitive sciences have shown that human explanations are contrastive i.e. people explain an observed event using some counterfactual events; such explanations reduce cognitive load, and provide actionable insights. Though already proven effective in machine learning and NLP communities, the formulation and impact of counterfactual explanations have not been well studied for search systems. In this work, we aim to investigate the effectiveness of this perspective via proposing and evaluating counterfactual explanations for the task of SeRE. Specifically, we first conduct a user study where we investigate if counterfactual explanations indeed improve search sessions' effectiveness. Taking this as a motivation, we discuss the desiderata that an ideal counterfactual explanation method for SeRE should adhere to. Next, we propose a method $\text{CFE}^2$ (\textbf{C}ounter\textbf{F}actual \textbf{E}xplanation with \textbf{E}diting) to provide pairwise explanations to search engine result page. Finally, we showcase that the proposed method when evaluated on four publicly available datasets outperforms baselines on both metrics and human evaluation.

相關內容

Cognition:Cognition:International Journal of Cognitive Science Explanation:認知:國際認知科學雜志。 Publisher:Elsevier。 SIT:

We address the problem of integrating data from multiple, possibly biased, observational and interventional studies, to eventually compute counterfactuals in structural causal models. We start from the case of a single observational dataset affected by a selection bias. We show that the likelihood of the available data has no local maxima. This enables us to use the causal expectation-maximisation scheme to compute approximate bounds for partially identifiable counterfactual queries, which are the focus of this paper. We then show how the same approach can solve the general case of multiple datasets, no matter whether interventional or observational, biased or unbiased, by remapping it into the former one via graphical transformations. Systematic numerical experiments and a case study on palliative care show the effectiveness and accuracy of our approach, while hinting at the benefits of integrating heterogeneous data to get informative bounds in case of partial identifiability.

Counterfactual explanations are an increasingly popular form of post hoc explanation due to their (i) applicability across problem domains, (ii) proposed legal compliance (e.g., with GDPR), and (iii) reliance on the contrastive nature of human explanation. Although counterfactual explanations are normally used to explain individual predictive-instances, we explore a novel use case in which groups of similar instances are explained in a collective fashion using ``group counterfactuals'' (e.g., to highlight a repeating pattern of illness in a group of patients). These group counterfactuals meet a human preference for coherent, broad explanations covering multiple events/instances. A novel, group-counterfactual algorithm is proposed to generate high-coverage explanations that are faithful to the to-be-explained model. This explanation strategy is also evaluated in a large, controlled user study (N=207), using objective (i.e., accuracy) and subjective (i.e., confidence, explanation satisfaction, and trust) psychological measures. The results show that group counterfactuals elicit modest but definite improvements in people's understanding of an AI system. The implications of these findings for counterfactual methods and for XAI are discussed.

Democratization of AI means not only that people can freely use AI, but also that people can collectively decide how AI is to be used. In particular, collective decision-making power is required to redress the negative externalities from the development of increasingly advanced AI systems, including degradation of the digital commons and unemployment from automation. The rapid pace of AI development and deployment currently leaves little room for this power. Monopolized in the hands of private corporations, the development of the most capable foundation models has proceeded largely without public input. There is currently no implemented mechanism for ensuring that the economic value generated by such models is redistributed to account for their negative externalities. The citizens that have generated the data necessary to train models do not have input on how their data are to be used. In this work, we propose that a public data trust assert control over training data for foundation models. In particular, this trust should scrape the internet as a digital commons, to license to commercial model developers for a percentage cut of revenues from deployment. First, we argue in detail for the existence of such a trust. We also discuss feasibility and potential risks. Second, we detail a number of ways for a data trust to incentivize model developers to use training data only from the trust. We propose a mix of verification mechanisms, potential regulatory action, and positive incentives. We conclude by highlighting other potential benefits of our proposed data trust and connecting our work to ongoing efforts in data and compute governance.

In many scenarios, the interpretability of machine learning models is a highly required but difficult task. To explain the individual predictions of such models, local model-agnostic approaches have been proposed. However, the process generating the explanations can be, for a user, as mysterious as the prediction to be explained. Furthermore, interpretability methods frequently lack theoretical guarantees, and their behavior on simple models is frequently unknown. While it is difficult, if not impossible, to ensure that an explainer behaves as expected on a cutting-edge model, we can at least ensure that everything works on simple, already interpretable models. In this paper, we present a theoretical analysis of Anchors (Ribeiro et al., 2018): a popular rule-based interpretability method that highlights a small set of words to explain a text classifier's decision. After formalizing its algorithm and providing useful insights, we demonstrate mathematically that Anchors produces meaningful results when used with linear text classifiers on top of a TF-IDF vectorization. We believe that our analysis framework can aid in the development of new explainability methods based on solid theoretical foundations.

Text-to-image diffusion models often make implicit assumptions about the world when generating images. While some assumptions are useful (e.g., the sky is blue), they can also be outdated, incorrect, or reflective of social biases present in the training data. Thus, there is a need to control these assumptions without requiring explicit user input or costly re-training. In this work, we aim to edit a given implicit assumption in a pre-trained diffusion model. Our Text-to-Image Model Editing method, TIME for short, receives a pair of inputs: a "source" under-specified prompt for which the model makes an implicit assumption (e.g., "a pack of roses"), and a "destination" prompt that describes the same setting, but with a specified desired attribute (e.g., "a pack of blue roses"). TIME then updates the model's cross-attention layers, as these layers assign visual meaning to textual tokens. We edit the projection matrices in these layers such that the source prompt is projected close to the destination prompt. Our method is highly efficient, as it modifies a mere 2.2% of the model's parameters in under one second. To evaluate model editing approaches, we introduce TIMED (TIME Dataset), containing 147 source and destination prompt pairs from various domains. Our experiments (using Stable Diffusion) show that TIME is successful in model editing, generalizes well for related prompts unseen during editing, and imposes minimal effect on unrelated generations.

Various brain functions that are necessary to maintain life activities materialize through the interaction of countless neurons. Therefore, it is important to analyze the structure of functional neuronal network. To elucidate the mechanism of brain function, many studies are being actively conducted on the structure of functional neuronal ensemble and hub, including all areas of neuroscience. In addition, recent study suggests that the existence of functional neuronal ensembles and hubs contributes to the efficiency of information processing. For these reasons, there is a demand for methods to infer functional neuronal ensembles from neuronal activity data, and methods based on Bayesian inference have been proposed. However, there is a problem in modeling the activity in Bayesian inference. The features of each neuron's activity have non-stationarity depending on physiological experimental conditions. As a result, the assumption of stationarity in Bayesian inference model impedes inference, which leads to destabilization of inference results and degradation of inference accuracy. In this study, we extend the range of the variable for expressing the neuronal state, and generalize the likelihood of the model for extended variables. By comparing with the previous study, our model can express the neuronal state in larger space. This generalization without restriction of the binary input enables us to perform soft clustering and apply the method to non-stationary neuroactivity data. In addition, for the effectiveness of the method, we apply the developed method to multiple synthetic fluorescence data generated from the electrical potential data in leaky integrated-and-fire model.

In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.

Structural data well exists in Web applications, such as social networks in social media, citation networks in academic websites, and threads data in online forums. Due to the complex topology, it is difficult to process and make use of the rich information within such data. Graph Neural Networks (GNNs) have shown great advantages on learning representations for structural data. However, the non-transparency of the deep learning models makes it non-trivial to explain and interpret the predictions made by GNNs. Meanwhile, it is also a big challenge to evaluate the GNN explanations, since in many cases, the ground-truth explanations are unavailable. In this paper, we take insights of Counterfactual and Factual (CF^2) reasoning from causal inference theory, to solve both the learning and evaluation problems in explainable GNNs. For generating explanations, we propose a model-agnostic framework by formulating an optimization problem based on both of the two casual perspectives. This distinguishes CF^2 from previous explainable GNNs that only consider one of them. Another contribution of the work is the evaluation of GNN explanations. For quantitatively evaluating the generated explanations without the requirement of ground-truth, we design metrics based on Counterfactual and Factual reasoning to evaluate the necessity and sufficiency of the explanations. Experiments show that no matter ground-truth explanations are available or not, CF^2 generates better explanations than previous state-of-the-art methods on real-world datasets. Moreover, the statistic analysis justifies the correlation between the performance on ground-truth evaluation and our proposed metrics.

We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that the generated samples for unseen-classes are often out of the true distribution, which causes severe recognition rate imbalance between the seen-class (high) and unseen-class (low). We show that the key reason is that the generation is not Counterfactual Faithful, and thus we propose a faithful one, whose generation is from the sample-specific counterfactual question: What would the sample look like, if we set its class attribute to a certain class, while keeping its sample attribute unchanged? Thanks to the faithfulness, we can apply the Consistency Rule to perform unseen/seen binary classification, by asking: Would its counterfactual still look like itself? If ``yes'', the sample is from a certain class, and ``no'' otherwise. Through extensive experiments on ZSL and OSR, we demonstrate that our framework effectively mitigates the seen/unseen imbalance and hence significantly improves the overall performance. Note that this framework is orthogonal to existing methods, thus, it can serve as a new baseline to evaluate how ZSL/OSR models generalize. Codes are available at //github.com/yue-zhongqi/gcm-cf.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

北京阿比特科技有限公司