亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a relational semantics based on poset products, and provide sufficient conditions guaranteeing its soundness and completeness for various substructural logics. We also demonstrate that our relational semantics unifies and generalizes two semantics already appearing in the literature: Aguzzoli, Bianchi, and Marra's temporal flow semantics for H\'ajek's basic logic, and Lewis-Smith, Oliva, and Robinson's semantics for intuitionistic Lukasiewicz logic. As a consequence of our general theory, we recover the soundness and completeness results of these prior studies in a uniform fashion, and extend them to infinitely-many other substructural logics.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Integration · Copilot · INTERACT · API ·
2023 年 9 月 12 日

Developers and data scientists often struggle to write command-line inputs, even though graphical interfaces or tools like ChatGPT can assist. The solution? "ai-cli," an open-source system inspired by GitHub Copilot that converts natural language prompts into executable commands for various Linux command-line tools. By tapping into OpenAI's API, which allows interaction through JSON HTTP requests, "ai-cli" transforms user queries into actionable command-line instructions. However, integrating AI assistance across multiple command-line tools, especially in open source settings, can be complex. Historically, operating systems could mediate, but individual tool functionality and the lack of a unified approach have made centralized integration challenging. The "ai-cli" tool, by bridging this gap through dynamic loading and linking with each program's Readline library API, makes command-line interfaces smarter and more user-friendly, opening avenues for further enhancement and cross-platform applicability.

This paper proposes Asynchronous Triggered Gradient Tracking, i.e., a distributed optimization algorithm to solve consensus optimization over networks with asynchronous communication. As a building block, we devise the continuous-time counterpart of the recently proposed (discrete-time) distributed gradient tracking called Continuous Gradient Tracking. By using a Lyapunov approach, we prove exponential stability of the equilibrium corresponding to agents' estimates being consensual to the optimal solution, with arbitrary initialization of the local estimates. Then, we propose two triggered versions of the algorithm. In the first one, the agents continuously integrate their local dynamics and exchange with neighbors their current local variables in a synchronous way. In Asynchronous Triggered Gradient Tracking, we propose a totally asynchronous scheme in which each agent sends to neighbors its current local variables based on a triggering condition that depends on a locally verifiable condition. The triggering protocol preserves the linear convergence of the algorithm and avoids the Zeno behavior, i.e., an infinite number of triggering events over a finite interval of time is excluded. By using the stability analysis of Continuous Gradient Tracking as a preparatory result, we show exponential stability of the equilibrium point holds for both triggered algorithms and any estimate initialization. Finally, the simulations validate the effectiveness of the proposed methods on a data analytics problem, showing also improved performance in terms of inter-agent communication.

Automatic related work generation must ground their outputs to the content of the cited papers to avoid non-factual hallucinations, but due to the length of scientific documents, existing abstractive approaches have conditioned only on the cited paper \textit{abstracts}. We demonstrate that the abstract is not always the most appropriate input for citation generation and that models trained in this way learn to hallucinate. We propose to condition instead on the \textit{cited text span} (CTS) as an alternative to the abstract. Because manual CTS annotation is extremely time- and labor-intensive, we experiment with automatic, ROUGE-based labeling of candidate CTS sentences, achieving sufficiently strong performance to substitute for expensive human annotations, and we propose a human-in-the-loop, keyword-based CTS retrieval approach that makes generating citation texts grounded in the full text of cited papers both promising and practical.

We propose a novel sensitivity analysis framework for linear estimands when identification failure can be viewed as seeing the wrong distribution of outcomes. Our family of assumptions bounds the density ratio between the observed and true conditional outcome distribution. This framework links naturally to selection models, generalizes existing assumptions for the Regression Discontinuity (RD) and Inverse Propensity Weighting (IPW) estimand, and provides a novel nonparametric perspective on violations of identification assumptions for ordinary least squares (OLS). Our sharp partial identification results extend existing results for IPW to cover other estimands and assumptions that allow even unbounded likelihood ratios, yielding a simple and unified characterization of bounds under assumptions like c-dependence of Masten and Poirier (2018). The sharp bounds can be written as a simple closed form moment of the data, the nuisance functions estimated in the primary analysis, and the conditional outcome quantile function. We find our method does well in simulations even when targeting a discontinuous and nearly infinite bound.

This paper delves into the intersection of computational theory and music, examining the concept of undecidability and its significant, yet overlooked, implications within the realm of modern music composition and production. It posits that undecidability, a principle traditionally associated with theoretical computer science, extends its relevance to the music industry. The study adopts a multidimensional approach, focusing on five key areas: (1) the Turing completeness of Ableton, a widely used digital audio workstation, (2) the undecidability of satisfiability in sound creation utilizing an array of effects, (3) the undecidability of constraints on polymeters in musical compositions, (4) the undecidability of satisfiability in just intonation harmony constraints, and (5) the undecidability of "new ordering systems". In addition to providing theoretical proof for these assertions, the paper elucidates the practical relevance of these concepts for practitioners outside the field of theoretical computer science. The ultimate aim is to foster a new understanding of undecidability in music, highlighting its broader applicability and potential to influence contemporary computer-assisted (and traditional) music making.

Structural subtyping and parametric polymorphism provide similar flexibility and reusability to programmers. For example, both features enable the programmer to provide a wider record as an argument to a function that expects a narrower one. However, the means by which they do so differs substantially, and the precise details of the relationship between them exists, at best, as folklore in literature. In this paper, we systematically study the relative expressive power of structural subtyping and parametric polymorphism. We focus our investigation on establishing the extent to which parametric polymorphism, in the form of row and presence polymorphism, can encode structural subtyping for variant and record types. We base our study on various Church-style $\lambda$-calculi extended with records and variants, different forms of structural subtyping, and row and presence polymorphism. We characterise expressiveness by exhibiting compositional translations between calculi. For each translation we prove a type preservation and operational correspondence result. We also prove a number of non-existence results. By imposing restrictions on both source and target types, we reveal further subtleties in the expressiveness landscape, the restrictions enabling otherwise impossible translations to be defined. More specifically, we prove that full subtyping cannot be encoded via polymorphism, but we show that several restricted forms of subtyping can be encoded via particular forms of polymorphism.

The investigation of the similarity between artists and music is crucial in music retrieval and recommendation, and addressing the challenge of the long-tail phenomenon is increasingly important. This paper proposes a Long-Tail Friendly Representation Framework (LTFRF) that utilizes neural networks to model the similarity relationship. Our approach integrates music, user, metadata, and relationship data into a unified metric learning framework, and employs a meta-consistency relationship as a regular term to introduce the Multi-Relationship Loss. Compared to the Graph Neural Network (GNN), our proposed framework improves the representation performance in long-tail scenarios, which are characterized by sparse relationships between artists and music. We conduct experiments and analysis on the AllMusic dataset, and the results demonstrate that our framework provides a favorable generalization of artist and music representation. Specifically, on similar artist/music recommendation tasks, the LTFRF outperforms the baseline by 9.69%/19.42% in Hit Ratio@10, and in long-tail cases, the framework achieves 11.05%/14.14% higher than the baseline in Consistent@10.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

北京阿比特科技有限公司