Equity in AI for healthcare is crucial due to its direct impact on human well-being. Despite advancements in 2D medical imaging fairness, the fairness of 3D models remains underexplored, hindered by the small sizes of 3D fairness datasets. Since 3D imaging surpasses 2D imaging in SOTA clinical care, it is critical to understand the fairness of these 3D models. To address this research gap, we conduct the first comprehensive study on the fairness of 3D medical imaging models across multiple protected attributes. Our investigation spans both 2D and 3D models and evaluates fairness across five architectures on three common eye diseases, revealing significant biases across race, gender, and ethnicity. To alleviate these biases, we propose a novel fair identity scaling (FIS) method that improves both overall performance and fairness, outperforming various SOTA fairness methods. Moreover, we release Harvard-FairVision, the first large-scale medical fairness dataset with 30,000 subjects featuring both 2D and 3D imaging data and six demographic identity attributes. Harvard-FairVision provides labels for three major eye disorders affecting about 380 million people worldwide, serving as a valuable resource for both 2D and 3D fairness learning. Our code and dataset are publicly accessible at \url{//ophai.hms.harvard.edu/datasets/harvard-fairvision30k}.
Motion information from 4D medical imaging offers critical insights into dynamic changes in patient anatomy for clinical assessments and radiotherapy planning and, thereby, enhances the capabilities of 3D image analysis. However, inherent physical and technical constraints of imaging hardware often necessitate a compromise between temporal resolution and image quality. Frame interpolation emerges as a pivotal solution to this challenge. Previous methods often suffer from discretion when they estimate the intermediate motion and execute the forward warping. In this study, we draw inspiration from fluid mechanics to propose a novel approach for continuously modeling patient anatomic motion using implicit neural representation. It ensures both spatial and temporal continuity, effectively bridging Eulerian and Lagrangian specifications together to naturally facilitate continuous frame interpolation. Our experiments across multiple datasets underscore the method's superior accuracy and speed. Furthermore, as a case-specific optimization (training-free) approach, it circumvents the need for extensive datasets and addresses model generalization issues.
Acoustical knee health assessment has long promised an alternative to clinically available medical imaging tools, but this modality has yet to be adopted in medical practice. The field is currently led by machine learning models processing acoustical features, which have presented promising diagnostic performances. However, these methods overlook the intricate multi-source nature of audio signals and the underlying mechanisms at play. By addressing this critical gap, the present paper introduces a novel causal framework for validating knee acoustical features. We argue that current machine learning methodologies for acoustical knee diagnosis lack the required assurances and thus cannot be used to classify acoustic features as biomarkers. Our framework establishes a set of essential theoretical guarantees necessary to validate this claim. We apply our methodology to three real-world experiments investigating the effect of researchers' expectations, the experimental protocol and the wearable employed sensor. This investigation reveals latent issues such as underlying shortcut learning and performance inflation. This study is the first independent result reproduction study in the field of acoustical knee health evaluation. We conclude with actionable insights from our findings, offering valuable guidance to navigate these crucial limitations in future research.
Promoting healthy lifestyle behaviors remains a major public health concern, particularly due to their crucial role in preventing chronic conditions such as cancer, heart disease, and type 2 diabetes. Mobile health applications present a promising avenue for low-cost, scalable health behavior change promotion. Researchers are increasingly exploring adaptive algorithms that personalize interventions to each person's unique context. However, in empirical studies, mobile health applications often suffer from small effect sizes and low adherence rates, particularly in comparison to human coaching. Tailoring advice to a person's unique goals, preferences, and life circumstances is a critical component of health coaching that has been underutilized in adaptive algorithms for mobile health interventions. To address this, we introduce a new Thompson sampling algorithm that can accommodate personalized reward functions (i.e., goals, preferences, and constraints), while also leveraging data sharing across individuals to more quickly be able to provide effective recommendations. We prove that our modification incurs only a constant penalty on cumulative regret while preserving the sample complexity benefits of data sharing. We present empirical results on synthetic and semi-synthetic physical activity simulators, where in the latter we conducted an online survey to solicit preference data relating to physical activity, which we use to construct realistic reward models that leverages historical data from another study. Our algorithm achieves substantial performance improvements compared to baselines that do not share data or do not optimize for individualized rewards.
Neuronal morphology is essential for studying brain functioning and understanding neurodegenerative disorders. As acquiring real-world morphology data is expensive, computational approaches for morphology generation have been studied. Traditional methods heavily rely on expert-set rules and parameter tuning, making it difficult to generalize across different types of morphologies. Recently, MorphVAE was introduced as the sole learning-based method, but its generated morphologies lack plausibility, i.e., they do not appear realistic enough and most of the generated samples are topologically invalid. To fill this gap, this paper proposes MorphGrower, which mimicks the neuron natural growth mechanism for generation. Specifically, MorphGrower generates morphologies layer by layer, with each subsequent layer conditioned on the previously generated structure. During each layer generation, MorphGrower utilizes a pair of sibling branches as the basic generation block and generates branch pairs synchronously. This approach ensures topological validity and allows for fine-grained generation, thereby enhancing the realism of the final generated morphologies. Results on four real-world datasets demonstrate that MorphGrower outperforms MorphVAE by a notable margin. Importantly, the electrophysiological response simulation demonstrates the plausibility of our generated samples from a neuroscience perspective. Our code is available at //github.com/Thinklab-SJTU/MorphGrower.
The drive to develop artificial neural networks that efficiently utilize resources has generated significant interest in bio-inspired Spiking Neural Networks (SNNs). These networks are particularly attractive due to their potential in applications requiring low power and memory. This potential is further enhanced by the ability to perform online local learning, enabling them to adapt to dynamic environments. This requires the model to be adaptive in a self-supervised manner. While self-supervised learning has seen great success in many deep learning domains, its application for online local learning in multi-layer SNNs remains underexplored. In this paper, we introduce the "EchoSpike Predictive Plasticity" (ESPP) learning rule, a pioneering online local learning rule designed to leverage hierarchical temporal dynamics in SNNs through predictive and contrastive coding. We validate the effectiveness of this approach using benchmark datasets, demonstrating that it performs on par with current state-of-the-art supervised learning rules. The temporal and spatial locality of ESPP makes it particularly well-suited for low-cost neuromorphic processors, representing a significant advancement in developing biologically plausible self-supervised learning models for neuromorphic computing at the edge.
Data sharing enables critical advances in many research areas and business applications, but it may lead to inadvertent disclosure of sensitive summary statistics (e.g., means or quantiles). Existing literature only focuses on protecting a single confidential quantity, while in practice, data sharing involves multiple sensitive statistics. We propose a novel framework to define, analyze, and protect multi-secret summary statistics privacy in data sharing. Specifically, we measure the privacy risk of any data release mechanism by the worst-case probability of an attacker successfully inferring summary statistic secrets. Given an attacker's objective spanning from inferring a subset to the entirety of summary statistic secrets, we systematically design and analyze tailored privacy metrics. Defining the distortion as the worst-case distance between the original and released data distribution, we analyze the tradeoff between privacy and distortion. Our contribution also includes designing and analyzing data release mechanisms tailored for different data distributions and secret types. Evaluations on real-world data demonstrate the effectiveness of our mechanisms in practical applications.
A longstanding challenge in mental well-being support is the reluctance of people to adopt psychologically beneficial activities, often due to a lack of motivation, low perceived trustworthiness, and limited personalization of recommendations. Chatbots have shown promise in promoting positive mental health practices, yet their rigid interaction flows and less human-like conversational experiences present significant limitations. In this work, we explore whether the anthropomorphic design (both LLM's persona design and conversational experience design) can enhance users' perception of the system and their willingness to adopt mental well-being activity recommendations. To this end, we introduce Sunnie, an anthropomorphic LLM-based conversational agent designed to offer personalized guidance for mental well-being support through multi-turn conversation and activity recommendations based on positive psychological theory. An empirical user study comparing the user experience with Sunnie and with a traditional survey-based activity recommendation system suggests that the anthropomorphic characteristics of Sunnie significantly enhance users' perception of the system and the overall usability; nevertheless, users' willingness to adopt activity recommendations did not change significantly.
The remarkable success of deep learning has prompted interest in its application to medical diagnosis. Even tough state-of-the-art deep learning models have achieved human-level accuracy on the classification of different types of medical data, these models are hardly adopted in clinical workflows, mainly due to their lack of interpretability. The black-box-ness of deep learning models has raised the need for devising strategies to explain the decision process of these models, leading to the creation of the topic of eXplainable Artificial Intelligence (XAI). In this context, we provide a thorough survey of XAI applied to medical diagnosis, including visual, textual, and example-based explanation methods. Moreover, this work reviews the existing medical imaging datasets and the existing metrics for evaluating the quality of the explanations . Complementary to most existing surveys, we include a performance comparison among a set of report generation-based methods. Finally, the major challenges in applying XAI to medical imaging are also discussed.
Drug-drug interaction(DDI) prediction is an important task in the medical health machine learning community. This study presents a new method, multi-view graph contrastive representation learning for drug-drug interaction prediction, MIRACLE for brevity, to capture inter-view molecule structure and intra-view interactions between molecules simultaneously. MIRACLE treats a DDI network as a multi-view graph where each node in the interaction graph itself is a drug molecular graph instance. We use GCNs and bond-aware attentive message passing networks to encode DDI relationships and drug molecular graphs in the MIRACLE learning stage, respectively. Also, we propose a novel unsupervised contrastive learning component to balance and integrate the multi-view information. Comprehensive experiments on multiple real datasets show that MIRACLE outperforms the state-of-the-art DDI prediction models consistently.
Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.