Class imbalance and label noise are pervasive in large-scale datasets, yet much of machine learning research assumes well-labeled, balanced data, which rarely reflects real world conditions. Existing approaches typically address either label noise or class imbalance in isolation, leading to suboptimal results when both issues coexist. In this work, we propose Conformal-in-the-Loop (CitL), a novel training framework that addresses both challenges with a conformal prediction-based approach. CitL evaluates sample uncertainty to adjust weights and prune unreliable examples, enhancing model resilience and accuracy with minimal computational cost. Our extensive experiments include a detailed analysis showing how CitL effectively emphasizes impactful data in noisy, imbalanced datasets. Our results show that CitL consistently boosts model performance, achieving up to a 6.1% increase in classification accuracy and a 5.0 mIoU improvement in segmentation. Our code is publicly available: CitL.
We study the Out-of-Distribution (OOD) generalization in machine learning and propose a general framework that establishes information-theoretic generalization bounds. Our framework interpolates freely between Integral Probability Metric (IPM) and $f$-divergence, which naturally recovers some known results (including Wasserstein- and KL-bounds), as well as yields new generalization bounds. Additionally, we show that our framework admits an optimal transport interpretation. When evaluated in two concrete examples, the proposed bounds either strictly improve upon existing bounds in some cases or match the best existing OOD generalization bounds. Moreover, by focusing on $f$-divergence and combining it with the Conditional Mutual Information (CMI) methods, we derive a family of CMI-based generalization bounds, which include the state-of-the-art ICIMI bound as a special instance. Finally, leveraging these findings, we analyze the generalization of the Stochastic Gradient Langevin Dynamics (SGLD) algorithm, showing that our derived generalization bounds outperform existing information-theoretic generalization bounds in certain scenarios.
Open-ended coding tasks, which ask students to construct programs according to certain specifications, are common in computer science education. Student modeling can be challenging since their open-ended nature means that student code can be diverse. Traditional knowledge tracing (KT) models that only analyze response correctness may not fully capture nuances in student knowledge from student code. In this paper, we introduce Test case-Informed Knowledge Tracing for Open-ended Coding (TIKTOC), a framework to simultaneously analyze and predict both open-ended student code and whether the code passes each test case. We augment the existing CodeWorkout dataset with the test cases used for a subset of the open-ended coding questions, and propose a multi-task learning KT method to simultaneously analyze and predict 1) whether a student's code submission passes each test case and 2) the student's open-ended code, using a large language model as the backbone. We quantitatively show that these methods outperform existing KT methods for coding that only use the overall score a code submission receives. We also qualitatively demonstrate how test case information, combined with open-ended code, helps us gain fine-grained insights into student knowledge.
Physics-based differentiable rendering (PBDR) has become an efficient method in computer vision, graphics, and machine learning for addressing an array of inverse problems. PBDR allows patterns to be generated from perceptions which can be applied to enhance object attributes like geometry, substances, and lighting by adding physical models of light propagation and materials interaction. Due to these capabilities, distinguished rendering has been employed in a wider range of sectors such as autonomous navigation, scene reconstruction, and material design. We provide an extensive overview of PBDR techniques in this study, emphasizing their creation, effectiveness, and limitations while managing inverse situations. We demonstrate modern techniques and examine their value in everyday situations.
By generating new yet effective data, data augmentation has become a promising method to mitigate the data sparsity problem in sequential recommendation. Existing works focus on augmenting the original data but rarely explore the issue of imbalanced relevance and diversity for augmented data, leading to semantic drift problems or limited performance improvements. In this paper, we propose a novel Balanced data Augmentation Plugin for Sequential Recommendation (BASRec) to generate data that balance relevance and diversity. BASRec consists of two modules: Single-sequence Augmentation and Cross-sequence Augmentation. The former leverages the randomness of the heuristic operators to generate diverse sequences for a single user, after which the diverse and the original sequences are fused at the representation level to obtain relevance. Further, we devise a reweighting strategy to enable the model to learn the preferences based on the two properties adaptively. The Cross-sequence Augmentation performs nonlinear mixing between different sequence representations from two directions. It produces virtual sequence representations that are diverse enough but retain the vital semantics of the original sequences. These two modules enhance the model to discover fine-grained preferences knowledge from single-user and cross-user perspectives. Extensive experiments verify the effectiveness of BASRec. The average improvement is up to 72.0% on GRU4Rec, 33.8% on SASRec, and 68.5% on FMLP-Rec. We demonstrate that BASRec generates data with a better balance between relevance and diversity than existing methods. The source code is available at //github.com/KingGugu/BASRec.
A provenance analysis for a query evaluation or a model checking computation extracts information on how its result depends on the atomic facts of the model or database. Traditional work on data provenance was, to a large extent, restricted to positive query languages or the negation-free fragment of first-order logic and showed how provenance abstractions can be usefully described as elements of commutative semirings -- most generally as multivariate polynomials with positive integer coefficients. We describe and evaluate here a provenance approach for dealing with negation, based on quotient semirings of polynomials with dual indeterminates. This not only provides a semiring provenance analysis for full first-order logic (and other logics and query languages with negation) but also permits a reverse provenance analysis, i.e., finding models that satisfy various properties under given provenance tracking assumptions. We describe the potential for applications to explaining missing query answers or failures of integrity constraints, and to using these explanations for computing repairs. This approach also is the basis of a systematic study of semiring semantics in a broad logical context.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Molecular design and synthesis planning are two critical steps in the process of molecular discovery that we propose to formulate as a single shared task of conditional synthetic pathway generation. We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding. This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes, demonstrating the potential to solve both problems of design and synthesis simultaneously. The approach leverages neural networks to probabilistically model the synthetic trees, one reaction step at a time, according to reactivity rules encoded in a discrete action space of reaction templates. We train these networks on hundreds of thousands of artificial pathways generated from a pool of purchasable compounds and a list of expert-curated templates. We validate our method with (a) the recovery of molecules using conditional generation, (b) the identification of synthesizable structural analogs, and (c) the optimization of molecular structures given oracle functions relevant to drug discovery.
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.