亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A prominent theory of affective response to music revolves around the concepts of surprisal and expectation. In prior work, this idea has been operationalized in the form of probabilistic models of music which allow for precise computation of song (or note-by-note) probabilities, conditioned on a 'training set' of prior musical or cultural experiences. To date, however, these models have been limited to compute exact probabilities through hand-crafted features or restricted to linear models which are likely not sufficient to represent the complex conditional distributions present in music. In this work, we propose to use modern deep probabilistic generative models in the form of a Diffusion Model to compute an approximate likelihood of a musical input sequence. Unlike prior work, such a generative model parameterized by deep neural networks is able to learn complex non-linear features directly from a training set itself. In doing so, we expect to find that such models are able to more accurately represent the 'surprisal' of music for human listeners. From the literature, it is known that there is an inverted U-shaped relationship between surprisal and the amount human subjects 'like' a given song. In this work we show that pre-trained diffusion models indeed yield musical surprisal values which exhibit a negative quadratic relationship with measured subject 'liking' ratings, and that the quality of this relationship is competitive with state of the art methods such as IDyOM. We therefore present this model a preliminary step in developing modern deep generative models of music expectation and subjective likability.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 統計量 · 估計/估計量 · 頻率主義學派 · AIM ·
2023 年 11 月 20 日

In many applied fields it is desired to make predictions with the aim of assessing the plausibility of more severe events than those already recorded to safeguard against calamities that have not yet occurred. This problem can be analysed using extreme value theory. We consider the popular peaks over a threshold method and show that the generalised Pareto approximation of the true predictive densities of both a future unobservable excess or peak random variable can be very accurate. We propose both a frequentist and a Bayesian approach for the estimation of such predictive densities. We show the asymptotic accuracy of the corresponding estimators and, more importantly, prove that the resulting predictive inference is asymptotically reliable. We show the utility of the proposed predictive tools analysing extreme temperatures in Milan in Italy.

Graph-based interactive theorem provers offer a visual representation of proofs, explicitly representing the dependencies and inferences between each of the proof steps in a graph or hypergraph format. The number and complexity of these dependency links can determine how long it takes to verify the validity of the entire proof. Towards this end, we present a set of parallel algorithms for the formal verification of graph-based natural-deduction (ND) style proofs. We introduce a definition of layering that captures dependencies between the proof steps (nodes). Nodes in each layer can then be verified in parallel as long as prior layers have been verified. To evaluate the performance of our algorithms on proof graphs, we propose a framework for finding the performance bounds and patterns using directed acyclic network topologies (DANTs). This framework allows us to create concrete instances of DANTs for empirical evaluation of our algorithms. With this, we compare our set of parallel algorithms against a serial implementation with two experiments: one scaling both the problem size and the other scaling the number of threads. Our findings show that parallelization results in improved verification performance for certain DANT instances. We also show that our algorithms scale for certain DANT instances with respect to the number of threads.

We present a sound and complete focusing calculus for the core of the logic behind the proof assistant Beluga as well as an overview of its implementation as a tactic in Beluga's interactive proof environment Harpoon. The focusing calculus is designed to construct uniform proofs over contextual LF and its meta-logic in Beluga: a dependently-typed first-order logic with recursive definitions. The implemented tactic is intended to complete straightforward sub-cases in proofs allowing users to focus only on the interesting aspects of their proofs, leaving tedious simple cases to Beluga's theorem prover. We demonstrate the effectiveness of our work by using the tactic to simplify proving weak-head normalization for the simply-typed lambda-calculus.

We explore the use of large language models (LLMs) for music generation using a retrieval system to select relevant examples. We find promising initial results for music generation in a dialogue with the user, especially considering the ease with which such a system can be implemented. The code is available online.

The accessibility of documents within a collection holds a pivotal role in Information Retrieval, signifying the ease of locating specific content in a collection of documents. This accessibility can be achieved via two distinct avenues. The first is through some retrieval model using a keyword or other feature-based search, and the other is where a document can be navigated using links associated with them, if available. Metrics such as PageRank, Hub, and Authority illuminate the pathways through which documents can be discovered within the network of content while the concept of Retrievability is used to quantify the ease with which a document can be found by a retrieval model. In this paper, we compare these two perspectives, PageRank and retrievability, as they quantify the importance and discoverability of content in a corpus. Through empirical experimentation on benchmark datasets, we demonstrate a subtle similarity between retrievability and PageRank particularly distinguishable for larger datasets.

Natural disasters such as hurricanes are increasing and causing widespread devastation. People's decisions and actions regarding whether to evacuate or not are critical and have a large impact on emergency planning and response. Our interest lies in computationally modeling complex relationships among various factors influencing evacuation decisions. We conducted a study on the evacuation of Hurricane Irma of the 2017 Atlantic hurricane season. The study was guided by the Protection motivation theory (PMT), a widely-used framework to understand people's responses to potential threats. Graphical models were constructed to represent the complex relationships among the factors involved and the evacuation decision. We evaluated different graphical structures based on conditional independence tests using Irma data. The final model largely aligns with PMT. It shows that both risk perception (threat appraisal) and difficulties in evacuation (coping appraisal) influence evacuation decisions directly and independently. Certain information received from media was found to influence risk perception, and through it influence evacuation behaviors indirectly. In addition, several variables were found to influence both risk perception and evacuation behaviors directly, including family and friends' suggestions, neighbors' evacuation behaviors, and evacuation notices from officials.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

Evaluating the quality of learned representations without relying on a downstream task remains one of the challenges in representation learning. In this work, we present Geometric Component Analysis (GeomCA) algorithm that evaluates representation spaces based on their geometric and topological properties. GeomCA can be applied to representations of any dimension, independently of the model that generated them. We demonstrate its applicability by analyzing representations obtained from a variety of scenarios, such as contrastive learning models, generative models and supervised learning models.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.

北京阿比特科技有限公司