亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this study, we propose a novel asset pricing approach, LLM Agent-based Asset Pricing Models (AAPM), which fuses qualitative discretionary investment analysis from LLM agents and quantitative manual financial economic factors to predict excess asset returns. The experimental results show that our approach outperforms machine learning-based asset pricing baselines in portfolio optimization and asset pricing errors. Specifically, the Sharpe ratio and average $|\alpha|$ for anomaly portfolios improved significantly by 9.6\% and 10.8\% respectively. In addition, we conducted extensive ablation studies on our model and analysis of the data to reveal further insights into the proposed method.

相關內容

ACM SIGACCESS Conference on Computers and Accessibility是為殘疾人和老年人提供與計算機相關的設計、評估、使用和教育研究的首要論壇。我們歡迎提交原始的高質量的有關計算和可訪問性的主題。今年,ASSETS首次將其范圍擴大到包括關于計算機無障礙教育相關主題的原創高質量研究。官網鏈接: · 標注 · MoDELS · 估計/估計量 · Performer ·
2024 年 11 月 4 日

The classifier chain is a widely used method for analyzing multi-labeled data sets. In this study, we introduce a generalization of the classifier chain: the classifier chain network. The classifier chain network enables joint estimation of model parameters, and allows to account for the influence of earlier label predictions on subsequent classifiers in the chain. Through simulations, we evaluate the classifier chain network's performance against multiple benchmark methods, demonstrating competitive results even in scenarios that deviate from its modeling assumptions. Furthermore, we propose a new measure for detecting conditional dependencies between labels and illustrate the classifier chain network's effectiveness using an empirical data set.

Recent developments in 2D visual generation have been remarkably successful. However, 3D and 4D generation remain challenging in real-world applications due to the lack of large-scale 4D data and effective model design. In this paper, we propose to jointly investigate general 3D and 4D generation by leveraging camera and object movements commonly observed in daily life. Due to the lack of real-world 4D data in the community, we first propose a data curation pipeline to obtain camera poses and object motion strength from videos. Based on this pipeline, we introduce a large-scale real-world 4D scene dataset: CamVid-30K. By leveraging all the 3D and 4D data, we develop our framework, GenXD, which allows us to produce any 3D or 4D scene. We propose multiview-temporal modules, which disentangle camera and object movements, to seamlessly learn from both 3D and 4D data. Additionally, GenXD employs masked latent conditions to support a variety of conditioning views. GenXD can generate videos that follow the camera trajectory as well as consistent 3D views that can be lifted into 3D representations. We perform extensive evaluations across various real-world and synthetic datasets, demonstrating GenXD's effectiveness and versatility compared to previous methods in 3D and 4D generation.

In this study, we introduce FilterViT, an enhanced version of MobileViT, which leverages an attention-based mechanism for early-stage downsampling. Traditional QKV operations on high-resolution feature maps are computationally intensive due to the abundance of tokens. To address this, we propose a filter attention mechanism using a convolutional neural network (CNN) to generate an importance mask, focusing attention on key image regions. The method significantly reduces computational complexity while maintaining interpretability, as it highlights essential image areas. Experimental results show that FilterViT achieves substantial gains in both efficiency and accuracy compared to other models. We also introduce DropoutViT, a variant that uses a stochastic approach for pixel selection, further enhancing robustness.

In this paper, we introduce WaKA (Wasserstein K-nearest neighbors Attribution), a novel attribution method that leverages principles from the LiRA (Likelihood Ratio Attack) framework and applies them to \( k \)-nearest neighbors classifiers (\( k \)-NN). WaKA efficiently measures the contribution of individual data points to the model's loss distribution, analyzing every possible \( k \)-NN that can be constructed using the training set, without requiring sampling or shadow model training. WaKA can be used \emph{a posteriori} as a membership inference attack (MIA) to assess privacy risks, and \emph{a priori} for data minimization and privacy influence measurement. Thus, WaKA can be seen as bridging the gap between data attribution and membership inference attack (MIA) literature by distinguishing between the value of a data point and its privacy risk. For instance, we show that self-attribution values are more strongly correlated with the attack success rate than the contribution of a point to model generalization. WaKA's different usages were also evaluated across diverse real-world datasets, demonstrating performance very close to LiRA when used as an MIA on \( k \)-NN classifiers, but with greater computational efficiency.

In this study, we introduce FEET, a standardized protocol designed to guide the development and benchmarking of foundation models. While numerous benchmark datasets exist for evaluating these models, we propose a structured evaluation protocol across three distinct scenarios to gain a comprehensive understanding of their practical performance. We define three primary use cases: frozen embeddings, few-shot embeddings, and fully fine-tuned embeddings. Each scenario is detailed and illustrated through two case studies: one in sentiment analysis and another in the medical domain, demonstrating how these evaluations provide a thorough assessment of foundation models' effectiveness in research applications. We recommend this protocol as a standard for future research aimed at advancing representation learning models.

In this paper, we propose an efficient compilation method for distributed quantum computing (DQC) using the Linear Nearest Neighbor (LNN) architecture. By exploiting the LNN topology's symmetry, we optimize quantum circuit compilation for High Local Connectivity, Sparse Full Connectivity (HLC-SFC) algorithms like Quantum Approximate Optimization Algorithm (QAOA) and Quantum Fourier Transform (QFT). We also utilize dangling qubits to minimize non-local interactions and reduce SWAP gates. Our approach significantly decreases compilation time, gate count, and circuit depth, improving scalability and robustness for large-scale quantum computations.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

We propose a knowledge-enhanced approach, ERNIE-ViL, to learn joint representations of vision and language. ERNIE-ViL tries to construct the detailed semantic connections (objects, attributes of objects and relationships between objects in visual scenes) across vision and language, which are essential to vision-language cross-modal tasks. Incorporating knowledge from scene graphs, ERNIE-ViL constructs Scene Graph Prediction tasks, i.e., Object Prediction, Attribute Prediction and Relationship Prediction in the pre-training phase. More specifically, these prediction tasks are implemented by predicting nodes of different types in the scene graph parsed from the sentence. Thus, ERNIE-ViL can model the joint representation characterizing the alignments of the detailed semantics across vision and language. Pre-trained on two large image-text alignment datasets (Conceptual Captions and SBU), ERNIE-ViL learns better and more robust joint representations. It achieves state-of-the-art performance on 5 vision-language downstream tasks after fine-tuning ERNIE-ViL. Furthermore, it ranked the 1st place on the VCR leader-board with an absolute improvement of 3.7%.

Deep reinforcement learning has recently shown many impressive successes. However, one major obstacle towards applying such methods to real-world problems is their lack of data-efficiency. To this end, we propose the Bottleneck Simulator: a model-based reinforcement learning method which combines a learned, factorized transition model of the environment with rollout simulations to learn an effective policy from few examples. The learned transition model employs an abstract, discrete (bottleneck) state, which increases sample efficiency by reducing the number of model parameters and by exploiting structural properties of the environment. We provide a mathematical analysis of the Bottleneck Simulator in terms of fixed points of the learned policy, which reveals how performance is affected by four distinct sources of error: an error related to the abstract space structure, an error related to the transition model estimation variance, an error related to the transition model estimation bias, and an error related to the transition model class bias. Finally, we evaluate the Bottleneck Simulator on two natural language processing tasks: a text adventure game and a real-world, complex dialogue response selection task. On both tasks, the Bottleneck Simulator yields excellent performance beating competing approaches.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司