This study leverages mobile phone data for 5.4 million users to unveil the complex dynamics of internal migration and daily mobility in Santiago de Chile during the global COVID-19 pandemic, with a focus on socioeconomic differentials. Major findings include an increase in daily mobility among lower-income brackets compared to higher ones in 2020. In contrast, long-term relocation patterns rose primarily among higher-income groups. These shifts indicate a nuanced response to the pandemic across socioeconomic strata. Unlike in 2017, economic factors in 2020 influenced a change not only in the decision to emigrate but also in the selection of destinations, suggesting a profound transformation in mobility behaviors. Contrary to expectations, there was no evidence supporting a preference for rural over urban destinations despite the surge in emigration from Santiago during the pandemic. The study enhances our understanding of how varying socioeconomic conditions intersect with mobility decisions during crises and provides valuable insights for policymakers aiming to enact fair, informed measures in rapidly changing circumstances.
We numerically investigate the generalized Steklov problem for the modified Helmholtz equation and focus on the relation between its spectrum and the geometric structure of the domain. We address three distinct aspects: (i) the asymptotic behavior of eigenvalues for polygonal domains; (ii) the dependence of the integrals of eigenfunctions on the domain symmetries; and (iii) the localization and exponential decay of Steklov eigenfunctions away from the boundary for smooth shapes and in the presence of corners. For this purpose, we implemented two complementary numerical methods to compute the eigenvalues and eigenfunctions of the associated Dirichlet-to-Neumann operator for various simply-connected planar domains. We also discuss applications of the obtained results in the theory of diffusion-controlled reactions and formulate several conjectures with relevance in spectral geometry.
Today, digital identity management for individuals is either inconvenient and error-prone or creates undesirable lock-in effects and violates privacy and security expectations. These shortcomings inhibit the digital transformation in general and seem particularly concerning in the context of novel applications such as access control for decentralized autonomous organizations and identification in the Metaverse. Decentralized or self-sovereign identity (SSI) aims to offer a solution to this dilemma by empowering individuals to manage their digital identity through machine-verifiable attestations stored in a "digital wallet" application on their edge devices. However, when presented to a relying party, these attestations typically reveal more attributes than required and allow tracking end users' activities. Several academic works and practical solutions exist to reduce or avoid such excessive information disclosure, from simple selective disclosure to data-minimizing anonymous credentials based on zero-knowledge proofs (ZKPs). We first demonstrate that the SSI solutions that are currently built with anonymous credentials still lack essential features such as scalable revocation, certificate chaining, and integration with secure elements. We then argue that general-purpose ZKPs in the form of zk-SNARKs can appropriately address these pressing challenges. We describe our implementation and conduct performance tests on different edge devices to illustrate that the performance of zk-SNARK-based anonymous credentials is already practical. We also discuss further advantages that general-purpose ZKPs can easily provide for digital wallets, for instance, to create "designated verifier presentations" that facilitate new design options for digital identity infrastructures that previously were not accessible because of the threat of man-in-the-middle attacks.
In prediction settings where data are collected over time, it is often of interest to understand both the importance of variables for predicting the response at each time point and the importance summarized over the time series. Building on recent advances in estimation and inference for variable importance measures, we define summaries of variable importance trajectories. These measures can be estimated and the same approaches for inference can be applied regardless of the choice of the algorithm(s) used to estimate the prediction function. We propose a nonparametric efficient estimation and inference procedure as well as a null hypothesis testing procedure that are valid even when complex machine learning tools are used for prediction. Through simulations, we demonstrate that our proposed procedures have good operating characteristics, and we illustrate their use by investigating the longitudinal importance of risk factors for suicide attempt.
At least two, different approaches to define and solve statistical models for the analysis of economic systems exist: the typical, econometric one, interpreting the Gravity Model specification as the expected link weight of an arbitrary probability distribution, and the one rooted into statistical physics, constructing maximum-entropy distributions constrained to satisfy certain network properties. In a couple of recent, companion papers they have been successfully integrated within the framework induced by the constrained minimisation of the Kullback-Leibler divergence: specifically, two, broad classes of models have been devised, i.e. the integrated and the conditional ones, defined by different, probabilistic rules to place links, load them with weights and turn them into proper, econometric prescriptions. Still, the recipes adopted by the two approaches to estimate the parameters entering into the definition of each model differ. In econometrics, a likelihood that decouples the binary and weighted parts of a model, treating a network as deterministic, is typically maximised; to restore its random character, two alternatives exist: either solving the likelihood maximisation on each configuration of the ensemble and taking the average of the parameters afterwards or taking the average of the likelihood function and maximising the latter one. The difference between these approaches lies in the order in which the operations of averaging and maximisation are taken - a difference that is reminiscent of the quenched and annealed ways of averaging out the disorder in spin glasses. The results of the present contribution, devoted to comparing these recipes in the case of continuous, conditional network models, indicate that the annealed estimation recipe represents the best alternative to the deterministic one.
Continual learning (CL) methods designed for natural image classification often fail to reach basic quality standards for medical image segmentation. Atlas-based segmentation, a well-established approach in medical imaging, incorporates domain knowledge on the region of interest, leading to semantically coherent predictions. This is especially promising for CL, as it allows us to leverage structural information and strike an optimal balance between model rigidity and plasticity over time. When combined with privacy-preserving prototypes, this process offers the advantages of rehearsal-based CL without compromising patient privacy. We propose Atlas Replay, an atlas-based segmentation approach that uses prototypes to generate high-quality segmentation masks through image registration that maintain consistency even as the training distribution changes. We explore how our proposed method performs compared to state-of-the-art CL methods in terms of knowledge transferability across seven publicly available prostate segmentation datasets. Prostate segmentation plays a vital role in diagnosing prostate cancer, however, it poses challenges due to substantial anatomical variations, benign structural differences in older age groups, and fluctuating acquisition parameters. Our results show that Atlas Replay is both robust and generalizes well to yet-unseen domains while being able to maintain knowledge, unlike end-to-end segmentation methods. Our code base is available under //github.com/MECLabTUDA/Atlas-Replay.
Data is a cornerstone for fine-tuning large language models, yet acquiring suitable data remains challenging. Challenges encompassed data scarcity, linguistic diversity, and domain-specific content. This paper presents lessons learned while crawling and refining data tailored for fine-tuning Vietnamese language models. Crafting such a dataset, while accounting for linguistic intricacies and striking a balance between inclusivity and accuracy, demands meticulous planning. Our paper presents a multidimensional strategy including leveraging existing datasets in the English language and developing customized data-crawling scripts with the assistance of generative AI tools. A fine-tuned LLM model for the Vietnamese language, which was produced using resultant datasets, demonstrated good performance while generating Vietnamese news articles from prompts. The study offers practical solutions and guidance for future fine-tuning models in languages like Vietnamese.
Purpose: Global adoption of the internet and mobile usage results in a huge variation in the cultural backgrounds of consumers who generate and consume electronic word-of-mouth (eWOM). Unsurprisingly, a research trend on cross-cultural eWOM has emerged. However, there has not been an attempt to synthesize this research topic. This paper aims to bridge this gap. Methodology: This research paper conducts a systematic literature review of the current research findings on cross-cultural eWOM. Journal articles published from 2006 to 2021 are included. This study then presents the key issues in the extant literature and suggests potential future research. Findings: The findings show that there has been an upward trend in the number of publications on cross-cultural eWOM since the early 2010s, with a relatively steeper increase toward 2020. The findings also synthesize cross-cultural eWOM research into four elements and suggest potential future research avenues. Value: To the best of the authors' knowledge, there is currently no exhaustive/integrated review of cross-cultural eWOM research. This research fills the need to summarize the current state of cross-cultural eWOM literature and identifies research questions to be addressed in the future.
This paper presents the workspace optimization of one-translational two-rotational (1T2R) parallel manipulators using a dimensionally homogeneous constraint-embedded Jacobian. The mixed degrees of freedom of 1T2R parallel manipulators, which cause dimensional inconsistency, make it difficult to optimize their architectural parameters. To solve this problem, a point-based approach with a shifting property, selection matrix, and constraint-embedded inverse Jacobian is proposed. A simplified formulation is provided, eliminating the complex partial differentiation required in previous approaches. The dimensional homogeneity of the proposed method was analytically proven, and its validity was confirmed by comparing it with the conventional point-based method using a 3-PRS manipulator. Furthermore, the approach was applied to an asymmetric 2-RRS/RRRU manipulator with no parasitic motion. This mechanism has a T-shape combination of limbs with different kinematic parameters, making it challenging to derive a dimensionally homogeneous Jacobian using the conventional method. Finally, optimization was performed, and the results show that the proposed method is more efficient than the conventional approach. The efficiency and simplicity of the proposed method were verified using two distinct parallel manipulators.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.