Hyper spectral images have drawn the attention of the researchers for its complexity to classify. It has nonlinear relation between the materials and the spectral information provided by the HSI image. Deep learning methods have shown superiority in learning this nonlinearity in comparison to traditional machine learning methods. Use of 3-D CNN along with 2-D CNN have shown great success for learning spatial and spectral features. However, it uses comparatively large number of parameters. Moreover, it is not effective to learn inter layer information. Hence, this paper proposes a neural network combining 3-D CNN, 2-D CNN and Bi-LSTM. The performance of this model has been tested on Indian Pines(IP) University of Pavia(PU) and Salinas Scene(SA) data sets. The results are compared with the state of-the-art deep learning-based models. This model performed better in all three datasets. It could achieve 99.83, 99.98 and 100 percent accuracy using only 30 percent trainable parameters of the state-of-art model in IP, PU and SA datasets respectively.
Image classification, a pivotal task in multiple industries, faces computational challenges due to the burgeoning volume of visual data. This research addresses these challenges by introducing two quantum machine learning models that leverage the principles of quantum mechanics for effective computations. Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era, where circuits with a large number of qubits are currently infeasible. This model demonstrated a record-breaking classification accuracy of 99.21% on the full MNIST dataset, surpassing the performance of known quantum-classical models, while having eight times fewer parameters than its classical counterpart. Also, the results of testing this hybrid model on a Medical MNIST (classification accuracy over 99%), and on CIFAR-10 (classification accuracy over 82%), can serve as evidence of the generalizability of the model and highlights the efficiency of quantum layers in distinguishing common features of input data. Our second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process. The model matches the performance of its classical counterpart, having four times fewer trainable parameters, and outperforms a classical model with equal weight parameters. These models represent advancements in quantum machine learning research and illuminate the path towards more accurate image classification systems.
Text-to-image person re-identification (TIReID) is a compelling topic in the cross-modal community, which aims to retrieve the target person based on a textual query. Although numerous TIReID methods have been proposed and achieved promising performance, they implicitly assume the training image-text pairs are correctly aligned, which is not always the case in real-world scenarios. In practice, the image-text pairs inevitably exist under-correlated or even false-correlated, a.k.a noisy correspondence (NC), due to the low quality of the images and annotation errors. To address this problem, we propose a novel Robust Dual Embedding method (RDE) that can learn robust visual-semantic associations even with NC. Specifically, RDE consists of two main components: 1) A Confident Consensus Division (CCD) module that leverages the dual-grained decisions of dual embedding modules to obtain a consensus set of clean training data, which enables the model to learn correct and reliable visual-semantic associations. 2) A Triplet Alignment Loss (TAL) relaxes the conventional Triplet Ranking loss with the hardest negative samples to a log-exponential upper bound over all negative ones, thus preventing the model collapse under NC and can also focus on hard-negative samples for promising performance. We conduct extensive experiments on three public benchmarks, namely CUHK-PEDES, ICFG-PEDES, and RSTPReID, to evaluate the performance and robustness of our RDE. Our method achieves state-of-the-art results both with and without synthetic noisy correspondences on all three datasets. Code is available at //github.com/QinYang79/RDE.
Microservice-based systems (MSS) may experience failures in various fault categories due to their complex and dynamic nature. To effectively handle failures, AIOps tools utilize trace-based anomaly detection and root cause analysis. In this paper, we propose a novel framework for few-shot abnormal trace classification for MSS. Our framework comprises two main components: (1) Multi-Head Attention Autoencoder for constructing system-specific trace representations, which enables (2) Transformer Encoder-based Model-Agnostic Meta-Learning to perform effective and efficient few-shot learning for abnormal trace classification. The proposed framework is evaluated on two representative MSS, Trainticket and OnlineBoutique, with open datasets. The results show that our framework can adapt the learned knowledge to classify new, unseen abnormal traces of novel fault categories both within the same system it was initially trained on and even in the different MSS. Within the same MSS, our framework achieves an average accuracy of 93.26\% and 85.2\% across 50 meta-testing tasks for Trainticket and OnlineBoutique, respectively, when provided with 10 instances for each task. In a cross-system context, our framework gets an average accuracy of 92.19\% and 84.77\% for the same meta-testing tasks of the respective system, also with 10 instances provided for each task. Our work demonstrates the applicability of achieving few-shot abnormal trace classification for MSS and shows how it can enable cross-system adaptability. This opens an avenue for building more generalized AIOps tools that require less system-specific data labeling for anomaly detection and root cause analysis.
We tackle the challenge of efficiently reconstructing a 3D asset from a single image with growing demands for automated 3D content creation pipelines. Previous methods primarily rely on Score Distillation Sampling (SDS) and Neural Radiance Fields (NeRF). Despite their significant success, these approaches encounter practical limitations due to lengthy optimization and considerable memory usage. In this report, we introduce Gamba, an end-to-end amortized 3D reconstruction model from single-view images, emphasizing two main insights: (1) 3D representation: leveraging a large number of 3D Gaussians for an efficient 3D Gaussian splatting process; (2) Backbone design: introducing a Mamba-based sequential network that facilitates context-dependent reasoning and linear scalability with the sequence (token) length, accommodating a substantial number of Gaussians. Gamba incorporates significant advancements in data preprocessing, regularization design, and training methodologies. We assessed Gamba against existing optimization-based and feed-forward 3D generation approaches using the real-world scanned OmniObject3D dataset. Here, Gamba demonstrates competitive generation capabilities, both qualitatively and quantitatively, while achieving remarkable speed, approximately 0.6 second on a single NVIDIA A100 GPU.
Unisolvence of unsymmetric Kansa collocation is still a substantially open problem. We prove that Kansa matrices with MultiQuadrics and Inverse MultiQuadrics for the Dirichlet problem of the Poisson equation are almost surely nonsingular, when the collocation points are chosen by any continuous random distribution in the domain interior and arbitrarily on its boundary.
Cloth-Changing Person Re-Identification (CC-ReID) aims to accurately identify the target person in more realistic surveillance scenarios, where pedestrians usually change their clothing. Despite great progress, limited cloth-changing training samples in existing CC-ReID datasets still prevent the model from adequately learning cloth-irrelevant features. In addition, due to the absence of explicit supervision to keep the model constantly focused on cloth-irrelevant areas, existing methods are still hampered by the disruption of clothing variations. To solve the above issues, we propose an Identity-aware Dual-constraint Network (IDNet) for the CC-ReID task. Specifically, to help the model extract cloth-irrelevant clues, we propose a Clothes Diversity Augmentation (CDA), which generates more realistic cloth-changing samples by enriching the clothing color while preserving the texture. In addition, a Multi-scale Constraint Block (MCB) is designed, which extracts fine-grained identity-related features and effectively transfers cloth-irrelevant knowledge. Moreover, a Counterfactual-guided Attention Module (CAM) is presented, which learns cloth-irrelevant features from channel and space dimensions and utilizes the counterfactual intervention for supervising the attention map to highlight identity-related regions. Finally, a Semantic Alignment Constraint (SAC) is designed to facilitate high-level semantic feature interaction. Comprehensive experiments on four CC-ReID datasets indicate that our method outperforms prior state-of-the-art approaches.
As ChatGPT possesses powerful capabilities in natural language processing and code analysis, it has received widespread attention since its launch. Developers have applied its powerful capabilities to various domains through software projects which are hosted on the largest open-source platform (GitHub) worldwide. Simultaneously, these projects have triggered extensive discussions. In order to comprehend the research content of these projects and understand the potential requirements discussed, we collected ChatGPT-related projects from the GitHub platform and utilized the LDA topic model to identify the discussion topics. Specifically, we selected 200 projects, categorizing them into three primary categories through analyzing their descriptions: ChatGPT implementation & training, ChatGPT application, ChatGPT improvement & extension. Subsequently, we employed the LDA topic model to identify 10 topics from issue texts, and compared the distribution and evolution trend of the discovered topics within the three primary project categories. Our observations include (1) The number of projects growing in a single month for the three primary project categories are closely associated with the development of ChatGPT. (2) There exist significant variations in the popularity of each topic for the three primary project categories. (3) The monthly changes in the absolute impact of each topic for the three primary project categories are diverse, which is often closely associated with the variation in the number of projects owned by that category. (4) With the passage of time, the relative impact of each topic exhibits different development trends in the three primary project categories. Based on these findings, we discuss implications for developers and users.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.
Deep learning techniques have received much attention in the area of image denoising. However, there are substantial differences in the various types of deep learning methods dealing with image denoising. Specifically, discriminative learning based on deep learning can ably address the issue of Gaussian noise. Optimization models based on deep learning are effective in estimating the real noise. However, there has thus far been little related research to summarize the different deep learning techniques for image denoising. In this paper, we offer a comparative study of deep techniques in image denoising. We first classify the deep convolutional neural networks (CNNs) for additive white noisy images; the deep CNNs for real noisy images; the deep CNNs for blind denoising and the deep CNNs for hybrid noisy images, which represents the combination of noisy, blurred and low-resolution images. Then, we analyze the motivations and principles of the different types of deep learning methods. Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis. Finally, we point out some potential challenges and directions of future research.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.