亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The epidemic disease, called the new coronavirus (COVID19), firstly occurred in Wuhan, China in December 2019. COVID19 was announced as an epidemic by World Health Organization soon after. Some of the symptoms of this disease are fever, cough, shortness of breath and difficulty in breathing. In more severe cases, death may occur as a result of infection. The most significant question in fighting the pandemic and controlling the epidemic is the early diagnosis of COVID19(+) patients and the follow-up of these patients. Therefore, various diagnostic mechanisms are used. Additionally to the RT-PCR test, medical imaging methods have been utilized, especially in the detection of COVID19(+) patients. In this study, an alternative approach was proposed by using cough data, which is one of the most prominent symptoms of COVID19(+) patients. The cough acoustic public dataset on the Virufy website was used. The entire data was normalized using z-normalization technique. The performance of the features obtained via the 5-layer empirical mode decomposition method and the performances of different classifiers has been compared. As the classifier algorithm, 5 different algorithms were used. The highest accuracy and F1-score performances were obtained by using Ensemble-Bagged-Trees algorithm as 90.6% and 90.5%, respectively. On the other hand, other classification algorithms used in the study are Support Vector Machines, Logistic Regression, Linear Discriminant Analysis and k-Nearest Neigbors, respectively. According to the results obtained, choosing the right classifier algorithm provides high results. Thus, it is clear that using cough acoustic data, those with COVID19(+) can be detected easily and effectively.

相關內容

Synthetic Aperture Radar (SAR) is the main instrument utilized for the detection of oil slicks on the ocean surface. In SAR images, some areas affected by ocean phenomena, such as rain cells, upwellings, and internal waves, or discharge from oil spills appear as dark spots on images. Dark spot detection is the first step in the detection of oil spills, which then become oil slick candidates. The accuracy of dark spot segmentation ultimately affects the accuracy of oil slick identification. Although some advanced deep learning methods that use pixels as processing units perform well in remote sensing image semantic segmentation, detecting some dark spots with weak boundaries from noisy SAR images remains a huge challenge. We propose a dark spot detection method based on superpixels deeper graph convolutional networks (SGDCN) in this paper, which takes the superpixels as the processing units and extracts features for each superpixel. The features calculated from superpixel regions are more robust than those from fixed pixel neighborhoods. To reduce the difficulty of learning tasks, we discard irrelevant features and obtain an optimal subset of features. After superpixel segmentation, the images are transformed into graphs with superpixels as nodes, which are fed into the deeper graph convolutional neural network for node classification. This graph neural network uses a differentiable aggregation function to aggregate the features of nodes and neighbors to form more advanced features. It is the first time using it for dark spot detection. To validate our method, we mark all dark spots on six SAR images covering the Baltic Sea and construct a dark spots detection dataset, which has been made publicly available (//drive.google.com/drive/folders/12UavrntkDSPrItISQ8iGefXn2gIZHxJ6?usp=sharing). The experimental results demonstrate that our proposed SGDCN is robust and effective.

The growing complexity of Cyber-Physical Systems (CPS) and challenges in ensuring safety and security have led to the increasing use of deep learning methods for accurate and scalable anomaly detection. However, machine learning (ML) models often suffer from low performance in predicting unexpected data and are vulnerable to accidental or malicious perturbations. Although robustness testing of deep learning models has been extensively explored in applications such as image classification and speech recognition, less attention has been paid to ML-driven safety monitoring in CPS. This paper presents the preliminary results on evaluating the robustness of ML-based anomaly detection methods in safety-critical CPS against two types of accidental and malicious input perturbations, generated using a Gaussian-based noise model and the Fast Gradient Sign Method (FGSM). We test the hypothesis of whether integrating the domain knowledge (e.g., on unsafe system behavior) with the ML models can improve the robustness of anomaly detection without sacrificing accuracy and transparency. Experimental results with two case studies of Artificial Pancreas Systems (APS) for diabetes management show that ML-based safety monitors trained with domain knowledge can reduce on average up to 54.2% of robustness error and keep the average F1 scores high while improving transparency.

The four-parameter generalized beta distribution of the second kind (GBII) has been proposed for modelling insurance losses with heavy-tailed features. The aim of this paper is to present a parametric composite GBII regression modelling by splicing two GBII distributions using mode matching method. It is designed for simultaneous modeling of small and large claims and capturing the policyholder heterogeneity by introducing the covariates into the location parameter. In such cases, the threshold that splits two GBII distributions varies across individuals policyholders based on their risk features. The proposed regression modelling also contains a wide range of insurance loss distributions as the head and the tail respectively and provides the close-formed expressions for parameter estimation and model prediction. A simulation study is conducted to show the accuracy of the proposed estimation method and the flexibility of the regressions. Some illustrations of the applicability of the new class of distributions and regressions are provided with a Danish fire losses data set and a Chinese medical insurance claims data set, comparing with the results of competing models from the literature.

We suggested a unified system with core components of data augmentation, ImageNet-pretrained ResNet-50, cost-sensitive loss, deep ensemble learning, and uncertainty estimation to quickly and consistently detect COVID-19 using acoustic evidence. To increase the model's capacity to identify a minority class, data augmentation and cost-sensitive loss are incorporated (infected samples). In the COVID-19 detection challenge, ImageNet-pretrained ResNet-50 has been found to be effective. The unified framework also integrates deep ensemble learning and uncertainty estimation to integrate predictions from various base classifiers for generalisation and reliability. We ran a series of tests using the DiCOVA2021 challenge dataset to assess the efficacy of our proposed method, and the results show that our method has an AUC-ROC of 85.43 percent, making it a promising method for COVID-19 detection. The unified framework also demonstrates that audio may be used to quickly diagnose different respiratory disorders.

Automated simplification models aim to make input texts more readable. Such methods have the potential to make complex information accessible to a wider audience, e.g., providing access to recent medical literature which might otherwise be impenetrable for a lay reader. However, such models risk introducing errors into automatically simplified texts, for instance by inserting statements unsupported by the corresponding original text, or by omitting key information. Providing more readable but inaccurate versions of texts may in many cases be worse than providing no such access at all. The problem of factual accuracy (and the lack thereof) has received heightened attention in the context of summarization models, but the factuality of automatically simplified texts has not been investigated. We introduce a taxonomy of errors that we use to analyze both references drawn from standard simplification datasets and state-of-the-art model outputs. We find that errors often appear in both that are not captured by existing evaluation metrics, motivating a need for research into ensuring the factual accuracy of automated simplification models.

Learning accurate classifiers for novel categories from very few examples, known as few-shot image classification, is a challenging task in statistical machine learning and computer vision. The performance in few-shot classification suffers from the bias in the estimation of classifier parameters; however, an effective underlying bias reduction technique that could alleviate this issue in training few-shot classifiers has been overlooked. In this work, we demonstrate the effectiveness of Firth bias reduction in few-shot classification. Theoretically, Firth bias reduction removes the $O(N^{-1})$ first order term from the small-sample bias of the Maximum Likelihood Estimator. Here we show that the general Firth bias reduction technique simplifies to encouraging uniform class assignment probabilities for multinomial logistic classification, and almost has the same effect in cosine classifiers. We derive an easy-to-implement optimization objective for Firth penalized multinomial logistic and cosine classifiers, which is equivalent to penalizing the cross-entropy loss with a KL-divergence between the uniform label distribution and the predictions. Then, we empirically evaluate that it is consistently effective across the board for few-shot image classification, regardless of (1) the feature representations from different backbones, (2) the number of samples per class, and (3) the number of classes. Finally, we show the robustness of Firth bias reduction, in the case of imbalanced data distribution. Our implementation is available at //github.com/ehsansaleh/firth_bias_reduction

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

We study few-shot acoustic event detection (AED) in this paper. Few-shot learning enables detection of new events with very limited labeled data. Compared to other research areas like computer vision, few-shot learning for audio recognition has been under-studied. We formulate few-shot AED problem and explore different ways of utilizing traditional supervised methods for this setting as well as a variety of meta-learning approaches, which are conventionally used to solve few-shot classification problem. Compared to supervised baselines, meta-learning models achieve superior performance, thus showing its effectiveness on generalization to new audio events. Our analysis including impact of initialization and domain discrepancy further validate the advantage of meta-learning approaches in few-shot AED.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司