亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A prominent weakness of modern language models (LMs) is their tendency to generate factually incorrect text, which hinders their usability. A natural question is whether such factual errors can be detected automatically. Inspired by truth-seeking mechanisms in law, we propose a factuality evaluation framework for LMs that is based on cross-examination. Our key idea is that an incorrect claim is likely to result in inconsistency with other claims that the model generates. To discover such inconsistencies, we facilitate a multi-turn interaction between the LM that generated the claim and another LM (acting as an examiner) which introduces questions to discover inconsistencies. We empirically evaluate our method on factual claims made by multiple recent LMs on four benchmarks, finding that it outperforms existing methods and baselines, often by a large gap. Our results demonstrate the potential of using interacting LMs for capturing factual errors.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 有偏 · MoDELS · Continuity · 相互獨立的 ·
2023 年 7 月 6 日

As large language models (LLMs) continue to advance, accurately and comprehensively evaluating their performance becomes increasingly challenging. Conventionally, human evaluations are considered the gold standard in natural language generation. Recent advancements incorporate state-of-the-art LLMs as proxies for human judges in evaluation processes. Nonetheless, the extent to which humans and LLMs are capable evaluators remains uncertain. This study aims to investigate the behavior of both crowd-sourced human and LLM-based judges when comparing outputs from different models. To accomplish this, we curate a dataset comprising intentionally flawed machine-generated answers. Our findings indicate that despite the potentially greater danger posed by factual errors, answers with factual errors were still rated more favorably compared to answers that were too short or contained grammatical errors. This highlights a concerning bias in the evaluation process. To address this issue, we propose to independently evaluate machine-generated text across multiple dimensions, rather than merging all the evaluation aspects into a single score. We instantiate this idea with the Elo rating system, resulting in the Multi-Elo Rating System. Empirical results from our study reveal that this proposed approach significantly enhances the quality of LLM-based evaluations, particularly in terms of factual accuracy. However, notable improvement is not observed in crowd-sourced-based evaluations, suggesting the need for further investigation and refinement.

Numerous researchers from various disciplines have explored commonalities and divergences in the evolution of complex social formations. Here, we explore whether there is a 'characteristic' time-course for the evolution of social complexity in a handful of different geographic areas. Data from the Seshat: Global History Databank is shifted so that the overlapping time series can be fitted to a single logistic regression model for all 23 geographic areas under consideration. The resulting regression shows convincing out-of-sample predictions and its period of extensive growth in social complexity can be identified via bootstrapping as a time interval of roughly 2500 years. To analyse the endogenous growth of social complexity, each time series is restricted to a central time interval without major disruptions in cultural or institutional continuity and both approaches result in a similar logistic regression curve. Our results suggest that these different areas have indeed experienced a similar course in the their evolution of social complexity, but that this is a lengthy process involving both internal developments and external influences.

Community detection is one of the most important methodological fields of network science, and one which has attracted a significant amount of attention over the past decades. This area deals with the automated division of a network into fundamental building blocks, with the objective of providing a summary of its large-scale structure. Despite its importance and widespread adoption, there is a noticeable gap between what is arguably the state-of-the-art and the methods that are actually used in practice in a variety of fields. Here we attempt to address this discrepancy by dividing existing methods according to whether they have a "descriptive" or an "inferential" goal. While descriptive methods find patterns in networks based on context-dependent notions of community structure, inferential methods articulate generative models, and attempt to fit them to data. In this way, they are able to provide insights into the mechanisms of network formation, and separate structure from randomness in a manner supported by statistical evidence. We review how employing descriptive methods with inferential aims is riddled with pitfalls and misleading answers, and thus should be in general avoided. We argue that inferential methods are more typically aligned with clearer scientific questions, yield more robust results, and should be in many cases preferred. We attempt to dispel some myths and half-truths often believed when community detection is employed in practice, in an effort to improve both the use of such methods as well as the interpretation of their results.

Hyperbole, or exaggeration, is a common linguistic phenomenon. The detection of hyperbole is an important part of understanding human expression. There have been several studies on hyperbole detection, but most of which focus on text modality only. However, with the development of social media, people can create hyperbolic expressions with various modalities, including text, images, videos, etc. In this paper, we focus on multimodal hyperbole detection. We create a multimodal detection dataset\footnote{The dataset will be released to the community.} from Weibo (a Chinese social media) and carry out some studies on it. We treat the text and image from a piece of weibo as two modalities and explore the role of text and image for hyperbole detection. Different pre-trained multimodal encoders are also evaluated on this downstream task to show their performance. Besides, since this dataset is constructed from five different topics, we also evaluate the cross-domain performance of different models. These studies can serve as a benchmark and point out the direction of further study on multimodal hyperbole detection.

ChatGPT brings revolutionary social value but also raises concerns about the misuse of AI-generated content. Consequently, an important question is how to detect whether content is generated by ChatGPT or by human. Existing detectors are built upon the assumption that there are distributional gaps between human-generated and AI-generated content. These gaps are typically identified using statistical information or classifiers. Our research challenges the distributional gap assumption in detectors. We find that detectors do not effectively discriminate the semantic and stylistic gaps between human-generated and AI-generated content. Instead, the "subtle differences", such as an extra space, become crucial for detection. Based on this discovery, we propose the SpaceInfi strategy to evade detection. Experiments demonstrate the effectiveness of this strategy across multiple benchmarks and detectors. We also provide a theoretical explanation for why SpaceInfi is successful in evading perplexity-based detection. Our findings offer new insights and challenges for understanding and constructing more applicable ChatGPT detectors.

Background: Despite the widespread use of automated security defect detection tools, software projects still contain many security defects that could result in serious damage. Such tools are largely context-insensitive and may not cover all possible scenarios in testing potential issues, which makes them susceptible to missing complex security defects. Hence, thorough detection entails a synergistic cooperation between these tools and human-intensive detection techniques, including code review. Code review is widely recognized as a crucial and effective practice for identifying security defects. Aim: This work aims to empirically investigate security defect detection through code review. Method: To this end, we conducted an empirical study by analyzing code review comments derived from four projects in the OpenStack and Qt communities. Through manually checking 20,995 review comments obtained by keyword-based search, we identified 614 comments as security-related. Results: Our results show that (1) security defects are not prevalently discussed in code review, (2) more than half of the reviewers provided explicit fixing strategies/solutions to help developers fix security defects, (3) developers tend to follow reviewers' suggestions and action the changes, (4) Not worth fixing the defect now and Disagreement between the developer and the reviewer are the main causes for not resolving security defects. Conclusions: Our research results demonstrate that (1) software security practices should combine manual code review with automated detection tools, achieving a more comprehensive coverage to identifying and addressing security defects, and (2) promoting appropriate standardization of practitioners' behaviors during code review remains necessary for enhancing software security.

In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.

Structural data well exists in Web applications, such as social networks in social media, citation networks in academic websites, and threads data in online forums. Due to the complex topology, it is difficult to process and make use of the rich information within such data. Graph Neural Networks (GNNs) have shown great advantages on learning representations for structural data. However, the non-transparency of the deep learning models makes it non-trivial to explain and interpret the predictions made by GNNs. Meanwhile, it is also a big challenge to evaluate the GNN explanations, since in many cases, the ground-truth explanations are unavailable. In this paper, we take insights of Counterfactual and Factual (CF^2) reasoning from causal inference theory, to solve both the learning and evaluation problems in explainable GNNs. For generating explanations, we propose a model-agnostic framework by formulating an optimization problem based on both of the two casual perspectives. This distinguishes CF^2 from previous explainable GNNs that only consider one of them. Another contribution of the work is the evaluation of GNN explanations. For quantitatively evaluating the generated explanations without the requirement of ground-truth, we design metrics based on Counterfactual and Factual reasoning to evaluate the necessity and sufficiency of the explanations. Experiments show that no matter ground-truth explanations are available or not, CF^2 generates better explanations than previous state-of-the-art methods on real-world datasets. Moreover, the statistic analysis justifies the correlation between the performance on ground-truth evaluation and our proposed metrics.

Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.

Automatic image captioning has recently approached human-level performance due to the latest advances in computer vision and natural language understanding. However, most of the current models can only generate plain factual descriptions about the content of a given image. However, for human beings, image caption writing is quite flexible and diverse, where additional language dimensions, such as emotion, humor and language styles, are often incorporated to produce diverse, emotional, or appealing captions. In particular, we are interested in generating sentiment-conveying image descriptions, which has received little attention. The main challenge is how to effectively inject sentiments into the generated captions without altering the semantic matching between the visual content and the generated descriptions. In this work, we propose two different models, which employ different schemes for injecting sentiments into image captions. Compared with the few existing approaches, the proposed models are much simpler and yet more effective. The experimental results show that our model outperform the state-of-the-art models in generating sentimental (i.e., sentiment-bearing) image captions. In addition, we can also easily manipulate the model by assigning different sentiments to the testing image to generate captions with the corresponding sentiments.

北京阿比特科技有限公司