亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There are limited options to estimate the treatment effects of variables which are continuous and measured at multiple time points, particularly if the true dose-response curve should be estimated as closely as possible. However, these situations may be of relevance: in pharmacology, one may be interested in how outcomes of people living with -- and treated for -- HIV, such as viral failure, would vary for time-varying interventions such as different drug concentration trajectories. A challenge for doing causal inference with continuous interventions is that the positivity assumption is typically violated. To address positivity violations, we develop projection functions, which reweigh and redefine the estimand of interest based on functions of the conditional support for the respective interventions. With these functions, we obtain the desired dose-response curve in areas of enough support, and otherwise a meaningful estimand that does not require the positivity assumption. We develop $g$-computation type plug-in estimators for this case. Those are contrasted with g-computation estimators which are applied to continuous interventions without specifically addressing positivity violations, which we propose to be presented with diagnostics. The ideas are illustrated with longitudinal data from HIV positive children treated with an efavirenz-based regimen as part of the CHAPAS-3 trial, which enrolled children $<13$ years in Zambia/Uganda. Simulations show in which situations a standard $g$-computation approach is appropriate, and in which it leads to bias and how the proposed weighted estimation approach then recovers the alternative estimand of interest.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

We consider discounted infinite horizon constrained Markov decision processes (CMDPs) where the goal is to find an optimal policy that maximizes the expected cumulative reward subject to expected cumulative constraints. Motivated by the application of CMDPs in online learning of safety-critical systems, we focus on developing an algorithm that ensures constraint satisfaction during learning. To this end, we develop a zeroth-order interior point approach based on the log barrier function of the CMDP. Under the commonly assumed conditions of Fisher non-degeneracy and bounded transfer error of the policy parameterization, we establish the theoretical properties of the algorithm. In particular, in contrast to existing CMDP approaches that ensure policy feasibility only upon convergence, our algorithm guarantees feasibility of the policies during the learning process and converges to the optimal policy with a sample complexity of $O(\varepsilon^{-6})$. In comparison to the state-of-the-art policy gradient-based algorithm, C-NPG-PDA, our algorithm requires an additional $O(\varepsilon^{-2})$ samples to ensure policy feasibility during learning with same Fisher-non-degenerate parameterization.

We examine the linear regression problem in a challenging high-dimensional setting with correlated predictors to explain and predict relevant quantities, with explicitly allowing the regression coefficient to vary from sparse to dense. Most classical high-dimensional regression estimators require some degree of sparsity. We discuss the more recent concepts of variable screening and random projection as computationally fast dimension reduction tools, and propose a new random projection matrix tailored to the linear regression problem with a theoretical bound on the gain in expected prediction error over conventional random projections. Around this new random projection, we built the Sparse Projected Averaged Regression (SPAR) method combining probabilistic variable screening steps with the random projection steps to obtain an ensemble of small linear models. In difference to existing methods, we introduce a thresholding parameter to obtain some degree of sparsity. In extensive simulations and two real data applications we guide through the elements of this method and compare prediction and variable selection performance to various competitors. For prediction, our method performs at least as good as the best competitors in most settings with a high number of truly active variables, while variable selection remains a hard task for all methods in high dimensions.

As the deployment of computer vision technology becomes increasingly common in science, the need for explanations of the system and its output has become a focus of great concern. Driven by the pressing need for interpretable models in science, we propose the use of Explainable Boosting Machines (EBMs) for scientific image data. Inspired by an important application underpinning the development of quantum technologies, we apply EBMs to cold-atom soliton image data tabularized using Gabor Wavelet Transform-based techniques that preserve the spatial structure of the data. In doing so, we demonstrate the use of EBMs for image data for the first time and show that our approach provides explanations that are consistent with human intuition about the data.

Most real-world networks are noisy and incomplete samples from an unknown target distribution. Refining them by correcting corruptions or inferring unobserved regions typically improves downstream performance. Inspired by the impressive generative capabilities that have been used to correct corruptions in images, and the similarities between "in-painting" and filling in missing nodes and edges conditioned on the observed graph, we propose a novel graph generative framework, SGDM, which is based on subgraph diffusion. Our framework not only improves the scalability and fidelity of graph diffusion models, but also leverages the reverse process to perform novel, conditional generation tasks. In particular, through extensive empirical analysis and a set of novel metrics, we demonstrate that our proposed model effectively supports the following refinement tasks for partially observable networks: T1: denoising extraneous subgraphs, T2: expanding existing subgraphs and T3: performing "style" transfer by regenerating a particular subgraph to match the characteristics of a different node or subgraph.

Previously, non-autoregressive models were widely perceived as being superior in generation efficiency but inferior in generation quality due to the difficulties of modeling multiple target modalities. To enhance the multi-modality modeling ability, we propose the diffusion glancing transformer, which employs a modality diffusion process and residual glancing sampling. The modality diffusion process is a discrete process that interpolates the multi-modal distribution along the decoding steps, and the residual glancing sampling approach guides the model to continuously learn the remaining modalities across the layers. Experimental results on various machine translation and text generation benchmarks demonstrate that DIFFGLAT achieves better generation accuracy while maintaining fast decoding speed compared with both autoregressive and non-autoregressive models.

Modern time series forecasting methods, such as Transformer and its variants, have shown strong ability in sequential data modeling. To achieve high performance, they usually rely on redundant or unexplainable structures to model complex relations between variables and tune the parameters with large-scale data. Many real-world data mining tasks, however, lack sufficient variables for relation reasoning, and therefore these methods may not properly handle such forecasting problems. With insufficient data, time series appear to be affected by many exogenous variables, and thus, the modeling becomes unstable and unpredictable. To tackle this critical issue, in this paper, we develop a novel algorithmic framework for inferring the intrinsic latent factors implied by the observable time series. The inferred factors are used to form multiple independent and predictable signal components that enable not only sparse relation reasoning for long-term efficiency but also reconstructing the future temporal data for accurate prediction. To achieve this, we introduce three characteristics, i.e., predictability, sufficiency, and identifiability, and model these characteristics via the powerful deep latent dynamics models to infer the predictable signal components. Empirical results on multiple real datasets show the efficiency of our method for different kinds of time series forecasting. The statistical analysis validates the predictability of the learned latent factors.

There are a number of available methods for selecting whom to prioritize for treatment, including ones based on treatment effect estimation, risk scoring, and hand-crafted rules. We propose rank-weighted average treatment effect (RATE) metrics as a simple and general family of metrics for comparing and testing the quality of treatment prioritization rules. RATE metrics are agnostic as to how the prioritization rules were derived, and only assess how well they identify individuals that benefit the most from treatment. We define a family of RATE estimators and prove a central limit theorem that enables asymptotically exact inference in a wide variety of randomized and observational study settings. RATE metrics subsume a number of existing metrics, including the Qini coefficient, and our analysis directly yields inference methods for these metrics. We showcase RATE in the context of a number of applications, including optimal targeting of aspirin to stroke patients.

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司