亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A deep latent variable model is a powerful method for capturing complex distributions. These models assume that underlying structures, but unobserved, are present within the data. In this dissertation, we explore high-dimensional problems related to physiological monitoring using latent variable models. First, we present a novel deep state-space model to generate electrical waveforms of the heart using optically obtained signals as inputs. This can bring about clinical diagnoses of heart disease via simple assessment through wearable devices. Second, we present a brain signal modeling scheme that combines the strengths of probabilistic graphical models and deep adversarial learning. The structured representations can provide interpretability and encode inductive biases to reduce the data complexity of neural oscillations. The efficacy of the learned representations is further studied in epilepsy seizure detection formulated as an unsupervised learning problem. Third, we propose a framework for the joint modeling of physiological measures and behavior. Existing methods to combine multiple sources of brain data provided are limited. Direct analysis of the relationship between different types of physiological measures usually does not involve behavioral data. Our method can identify the unique and shared contributions of brain regions to behavior and can be used to discover new functions of brain regions. The success of these innovative computational methods would allow the translation of biomarker findings across species and provide insight into neurocognitive analysis in numerous biological studies and clinical diagnoses, as well as emerging consumer applications.

相關內容

Neural network representations of simple models, such as linear regression, are being studied increasingly to better understand the underlying principles of deep learning algorithms. However, neural representations of distributional regression models, such as the Cox model, have received little attention so far. We close this gap by proposing a framework for distributional regression using inverse flow transformations (DRIFT), which includes neural representations of the aforementioned models. We empirically demonstrate that the neural representations of models in DRIFT can serve as a substitute for their classical statistical counterparts in several applications involving continuous, ordered, time-series, and survival outcomes. We confirm that models in DRIFT empirically match the performance of several statistical methods in terms of estimation of partial effects, prediction, and aleatoric uncertainty quantification. DRIFT covers both interpretable statistical models and flexible neural networks opening up new avenues in both statistical modeling and deep learning.

A dynamic graph algorithm is a data structure that supports edge insertions, deletions, and specific problem queries. While extensive research exists on dynamic algorithms for graph problems solvable in polynomial time, most of these algorithms have not been implemented or empirically evaluated. This work addresses the NP-complete maximum weight and cardinality independent set problems in a dynamic setting, applicable to areas like dynamic map-labeling and vehicle routing. Real-world instances can be vast, with millions of vertices and edges, making it challenging to find near-optimal solutions quickly. Exact solvers can find optimal solutions but have exponential worst-case runtimes. Conversely, heuristic algorithms use local search techniques to improve solutions by optimizing vertices. In this work, we introduce a novel local search technique called optimal neighborhood exploration. This technique creates independent subproblems that are solved to optimality, leading to improved overall solutions. Through numerous experiments, we assess the effectiveness of our approach and compare it with other state-of-the-art dynamic solvers. Our algorithm features a parameter, the subproblem size, that balances running time and solution quality. With this parameter, our configuration matches state-of-the-art performance for the cardinality independent set problem. By increasing the parameter, we significantly enhance solution quality.

Deep learning-based models are widely deployed in autonomous driving areas, especially the increasingly noticed end-to-end solutions. However, the black-box property of these models raises concerns about their trustworthiness and safety for autonomous driving, and how to debug the causality has become a pressing concern. Despite some existing research on the explainability of autonomous driving, there is currently no systematic solution to help researchers debug and identify the key factors that lead to the final predicted action of end-to-end autonomous driving. In this work, we propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving. First, we validate the essential information that the final planning depends on by using controlled variables and counterfactual interventions for qualitative analysis. Then, we quantitatively assess the factors influencing model decisions by visualizing and statistically analyzing the response of key model inputs. Finally, based on the comprehensive study of the multi-factorial end-to-end autonomous driving system, we have developed a strong baseline and a tool for exploring causality in the close-loop simulator CARLA. It leverages the essential input sources to obtain a well-designed model, resulting in highly competitive capabilities. As far as we know, our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one. Thorough close-loop experiments demonstrate that our method can be applied to end-to-end autonomous driving solutions for causality debugging. Code will be available at //github.com/bdvisl/DriveInsight.

Tempered stable distributions are frequently used in financial applications (e.g., for option pricing) in which the tails of stable distributions would be too heavy. Given the non-explicit form of the probability density function, estimation relies on numerical algorithms which typically are time-consuming. We compare several parametric estimation methods such as the maximum likelihood method and different generalized method of moment approaches. We study large sample properties and derive consistency, asymptotic normality, and asymptotic efficiency results for our estimators. Additionally, we conduct simulation studies to analyze finite sample properties measured by the empirical bias, precision, and asymptotic confidence interval coverage rates and compare computational costs. We cover relevant subclasses of tempered stable distributions such as the classical tempered stable distribution and the tempered stable subordinator. Moreover, we discuss the normal tempered stable distribution which arises by subordinating a Brownian motion with a tempered stable subordinator. Our financial applications to log returns of asset indices and to energy spot prices illustrate the benefits of tempered stable models.

This work uniquely identifies and characterizes four prevalent multimodal model architectural patterns in the contemporary multimodal landscape. Systematically categorizing models by architecture type facilitates monitoring of developments in the multimodal domain. Distinct from recent survey papers that present general information on multimodal architectures, this research conducts a comprehensive exploration of architectural details and identifies four specific architectural types. The types are distinguished by their respective methodologies for integrating multimodal inputs into the deep neural network model. The first two types (Type A and B) deeply fuses multimodal inputs within the internal layers of the model, whereas the following two types (Type C and D) facilitate early fusion at the input stage. Type-A employs standard cross-attention, whereas Type-B utilizes custom-designed layers for modality fusion within the internal layers. On the other hand, Type-C utilizes modality-specific encoders, while Type-D leverages tokenizers to process the modalities at the model's input stage. The identified architecture types aid the monitoring of any-to-any multimodal model development. Notably, Type-C and Type-D are currently favored in the construction of any-to-any multimodal models. Type-C, distinguished by its non-tokenizing multimodal model architecture, is emerging as a viable alternative to Type-D, which utilizes input-tokenizing techniques. To assist in model selection, this work highlights the advantages and disadvantages of each architecture type based on data and compute requirements, architecture complexity, scalability, simplification of adding modalities, training objectives, and any-to-any multimodal generation capability.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司