Units of measure with prefixes and conversion rules are given a formal semantic model in terms of categorial group theory. Basic structures and both natural and contingent semantic operations are defined. Conversion rules are represented as a class of ternary relations with both group-like and category-like properties. A hierarchy of subclasses is explored, each with better algebraic behavior than the preceding, culminating in a direct efficient conversion-by-rewriting algorithm.
In the realm of interpretability and out-of-distribution generalisation, the identifiability of latent variable models has emerged as a captivating field of inquiry. In this work, we delve into the identifiability of Switching Dynamical Systems, taking an initial stride toward extending identifiability analysis to sequential latent variable models. We first prove the identifiability of Markov Switching Models, which commonly serve as the prior distribution for the continuous latent variables in Switching Dynamical Systems. We present identification conditions for first-order Markov dependency structures, whose transition distribution is parametrised via non-linear Gaussians. We then establish the identifiability of the latent variables and non-linear mappings in Switching Dynamical Systems up to affine transformations, by leveraging identifiability analysis techniques from identifiable deep latent variable models. We finally develop estimation algorithms for identifiable Switching Dynamical Systems. Throughout empirical studies, we demonstrate the practicality of identifiable Switching Dynamical Systems for segmenting high-dimensional time series such as videos, and showcase the use of identifiable Markov Switching Models for regime-dependent causal discovery in climate data.
Modeling the ratio of two dependent components as a function of covariates is a frequently pursued objective in observational research. Despite the high relevance of this topic in medical studies, where biomarker ratios are often used as surrogate endpoints for specific diseases, existing models are based on oversimplified assumptions, assuming e.g.\@ independence or strictly positive associations between the components. In this paper, we close this gap in the literature and propose a regression model where the marginal distributions of the two components are linked by Frank copula. A key feature of our model is that it allows for both positive and negative correlations between the components, with one of the model parameters being directly interpretable in terms of Kendall's rank correlation coefficient. We study our method theoretically, evaluate finite sample properties in a simulation study and demonstrate its efficacy in an application to diagnosis of Alzheimer's disease via ratios of amyloid-beta and total tau protein biomarkers.
Many important tasks of large-scale recommender systems can be naturally cast as testing multiple linear forms for noisy matrix completion. These problems, however, present unique challenges because of the subtle bias-and-variance tradeoff of and an intricate dependence among the estimated entries induced by the low-rank structure. In this paper, we develop a general approach to overcome these difficulties by introducing new statistics for individual tests with sharp asymptotics both marginally and jointly, and utilizing them to control the false discovery rate (FDR) via a data splitting and symmetric aggregation scheme. We show that valid FDR control can be achieved with guaranteed power under nearly optimal sample size requirements using the proposed methodology. Extensive numerical simulations and real data examples are also presented to further illustrate its practical merits.
We present a novel formulation of structural design optimization problems specifically tailored to be solved by quantum annealing (QA). Structural design optimization aims to find the best, i.e., material-efficient yet high-performance, configuration of a structure. To this end, computational optimization strategies can be employed, where a recently evolving strategy based on quantum mechanical effects is QA. This approach requires the optimization problem to be present, e.g., as a quadratic unconstrained binary optimization (QUBO) model. Thus, we develop a novel formulation of the optimization problem. The latter typically involves an analysis model for the component. Here, we use energy minimization principles that govern the behavior of structures under applied loads. This allows us to state the optimization problem as one overall minimization problem. Next, we map this to a QUBO problem that can be immediately solved by QA. We validate the proposed approach using a size optimization problem of a compound rod under self-weight loading. To this end, we develop strategies to account for the limitations of currently available hardware and find that the presented formulation is suitable for solving structural design optimization problems through QA and, for small-scale problems, already works on today's hardware.
Mixed linear regression (MLR) is a powerful model for characterizing nonlinear relationships by utilizing a mixture of linear regression sub-models. The identification of MLR is a fundamental problem, where most of the existing results focus on offline algorithms, rely on independent and identically distributed (i.i.d) data assumptions, and provide local convergence results only. This paper investigates the online identification and data clustering problems for two basic classes of MLRs, by introducing two corresponding new online identification algorithms based on the expectation-maximization (EM) principle. It is shown that both algorithms will converge globally without resorting to the traditional i.i.d data assumptions. The main challenge in our investigation lies in the fact that the gradient of the maximum likelihood function does not have a unique zero, and a key step in our analysis is to establish the stability of the corresponding differential equation in order to apply the celebrated Ljung's ODE method. It is also shown that the within-cluster error and the probability that the new data is categorized into the correct cluster are asymptotically the same as those in the case of known parameters. Finally, numerical simulations are provided to verify the effectiveness of our online algorithms.
Active subspace (AS) methods are a valuable tool for understanding the relationship between the inputs and outputs of a Physics simulation. In this paper, an elegant generalization of the traditional ASM is developed to assess the co-activity of two computer models. This generalization, which we refer to as a Co-Active Subspace (C-AS) Method, allows for the joint analysis of two or more computer models allowing for thorough exploration of the alignment (or non-alignment) of the respective gradient spaces. We define co-active directions, co-sensitivity indices, and a scalar ``concordance" metric (and complementary ``discordance" pseudo-metric) and we demonstrate that these are powerful tools for understanding the behavior of a class of computer models, especially when used to supplement traditional AS analysis. Details for efficient estimation of the C-AS and an accompanying R package (github.com/knrumsey/concordance) are provided. Practical application is demonstrated through analyzing a set of simulated rate stick experiments for PBX 9501, a high explosive, offering insights into complex model dynamics.
We propose a unified class of generalized structural equation models (GSEMs) with data of mixed types in mediation analysis, including continuous, categorical, and count variables. Such models extend substantially the classical linear structural equation model to accommodate many data types arising from the application of mediation analysis. Invoking the hierarchical modeling approach, we specify GSEMs by a copula joint distribution of outcome variable, mediator and exposure variable, in which marginal distributions are built upon generalized linear models (GLMs) with confounding factors. We discuss the identifiability conditions for the causal mediation effects in the counterfactual paradigm as well as the issue of mediation leakage, and develop an asymptotically efficient profile maximum likelihood estimation and inference for two key mediation estimands, natural direct effect and natural indirect effect, in different scenarios of mixed data types. The proposed new methodology is illustrated by a motivating epidemiological study that aims to investigate whether the tempo of reaching infancy BMI peak (delay or on time), an important early life growth milestone, may mediate the association between prenatal exposure to phthalates and pubertal health outcomes.
The moments of the coefficients of elliptic curve L-functions are related to numerous arithmetic problems. Rosen and Silverman proved a conjecture of Nagao relating the first moment of one-parameter families satisfying Tate's conjecture to the rank of the corresponding elliptic surface over Q(T); one can also construct families of moderate rank by finding families with large first moments. Michel proved that if j(T) is not constant, then the second moment of the family is of size p^2 + O(p^(3/2)); these two moments show that for suitably small support the behavior of zeros near the central point agree with that of eigenvalues from random matrix ensembles, with the higher moments impacting the rate of convergence. In his thesis, Miller noticed a negative bias in the second moment of every one-parameter family of elliptic curves over the rationals whose second moment had a calculable closed-form expression, specifically the first lower order term which does not average to zero is on average negative. This Bias Conjecture is confirmed for many families; however, these are highly non-generic families whose resulting Legendre sums can be determined. Inspired by the recent successes by Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, Alexey Pozdnyakov and others in investigations of murmurations of elliptic curve coefficients with machine learning techniques, we pose a similar problem for trying to understand the Bias Conjecture. As a start to this program, we numerically investigate the Bias Conjecture for a family whose bias is positive for half the primes. Since the numerics do not offer conclusive evidence that negative bias for the other half is enough to overwhelm the positive bias, the Bias Conjecture cannot be verified for the family.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.