Generating realistic audio effects for movies and other media is a challenging task that is accomplished today primarily through physical techniques known as Foley art. Foley artists create sounds with common objects (e.g., boxing gloves, broken glass) in time with video as it is playing to generate captivating audio tracks. In this work, we aim to develop a deep-learning based framework that does much the same - observes video in it's natural sequence and generates realistic audio to accompany it. Notably, we have reason to believe this is achievable due to advancements in realistic audio generation techniques conditioned on other inputs (e.g., Wavenet conditioned on text). We explore several different model architectures to accomplish this task that process both previously-generated audio and video context. These include deep-fusion CNN, dilated Wavenet CNN with visual context, and transformer-based architectures. We find that the transformer-based architecture yields the most promising results, matching low-frequencies to visual patterns effectively, but failing to generate more nuanced waveforms.
We present a novel approach named OmniControl for incorporating flexible spatial control signals into a text-conditioned human motion generation model based on the diffusion process. Unlike previous methods that can only control the pelvis trajectory, OmniControl can incorporate flexible spatial control signals over different joints at different times with only one model. Specifically, we propose analytic spatial guidance that ensures the generated motion can tightly conform to the input control signals. At the same time, realism guidance is introduced to refine all the joints to generate more coherent motion. Both the spatial and realism guidance are essential and they are highly complementary for balancing control accuracy and motion realism. By combining them, OmniControl generates motions that are realistic, coherent, and consistent with the spatial constraints. Experiments on HumanML3D and KIT-ML datasets show that OmniControl not only achieves significant improvement over state-of-the-art methods on pelvis control but also shows promising results when incorporating the constraints over other joints.
In the art of video editing, sound helps add character to an object and immerse the viewer within a space. Through formative interviews with professional editors (N=10), we found that the task of adding sounds to video can be challenging. This paper presents Soundify, a system that assists editors in matching sounds to video. Given a video, Soundify identifies matching sounds, synchronizes the sounds to the video, and dynamically adjusts panning and volume to create spatial audio. In a human evaluation study (N=889), we show that Soundify is capable of matching sounds to video out-of-the-box for a diverse range of audio categories. In a within-subjects expert study (N=12), we demonstrate the usefulness of Soundify in helping video editors match sounds to video with lighter workload, reduced task completion time, and improved usability.
Generating video stories from text prompts is a complex task. In addition to having high visual quality, videos need to realistically adhere to a sequence of text prompts whilst being consistent throughout the frames. Creating a benchmark for video generation requires data annotated over time, which contrasts with the single caption used often in video datasets. To fill this gap, we collect comprehensive human annotations on three existing datasets, and introduce StoryBench: a new, challenging multi-task benchmark to reliably evaluate forthcoming text-to-video models. Our benchmark includes three video generation tasks of increasing difficulty: action execution, where the next action must be generated starting from a conditioning video; story continuation, where a sequence of actions must be executed starting from a conditioning video; and story generation, where a video must be generated from only text prompts. We evaluate small yet strong text-to-video baselines, and show the benefits of training on story-like data algorithmically generated from existing video captions. Finally, we establish guidelines for human evaluation of video stories, and reaffirm the need of better automatic metrics for video generation. StoryBench aims at encouraging future research efforts in this exciting new area.
Volumetric video has emerged as a prominent medium within the realm of eXtended Reality (XR) with the advancements in computer graphics and depth capture hardware. Users can fully immersive themselves in volumetric video with the ability to switch their viewport in six degree-of-freedom (DOF), including three rotational dimensions (yaw, pitch, roll) and three translational dimensions (X, Y, Z). Different from traditional 2D videos that are composed of pixel matrices, volumetric videos employ point clouds, meshes, or voxels to represent a volumetric scene, resulting in significantly larger data sizes. While previous works have successfully achieved volumetric video streaming in video-on-demand scenarios, the live streaming of volumetric video remains an unresolved challenge due to the limited network bandwidth and stringent latency constraints. In this paper, we for the first time propose a holistic live volumetric video streaming system, LiveVV, which achieves multi-view capture, scene segmentation \& reuse, adaptive transmission, and rendering. LiveVV contains multiple lightweight volumetric video capture modules that are capable of being deployed without prior preparation. To reduce bandwidth consumption, LiveVV processes static and dynamic volumetric content separately by reusing static data with low disparity and decimating data with low visual saliency. Besides, to deal with network fluctuation, LiveVV integrates a volumetric video adaptive bitrate streaming algorithm (VABR) to enable fluent playback with the maximum quality of experience. Extensive real-world experiment shows that LiveVV can achieve live volumetric video streaming at a frame rate of 24 fps with a latency of less than 350ms.
The emergence of vision transformers (ViTs) in image classification has shifted the methodologies for visual representation learning. In particular, ViTs learn visual representation at full receptive field per layer across all the image patches, in comparison to the increasing receptive fields of CNNs across layers and other alternatives (e.g., large kernels and atrous convolution). In this work, for the first time we explore the global context learning potentials of ViTs for dense visual prediction (e.g., semantic segmentation). Our motivation is that through learning global context at full receptive field layer by layer, ViTs may capture stronger long-range dependency information, critical for dense prediction tasks. We first demonstrate that encoding an image as a sequence of patches, a vanilla ViT without local convolution and resolution reduction can yield stronger visual representation for semantic segmentation. For example, our model, termed as SEgmentation TRansformer (SETR), excels on ADE20K (50.28% mIoU, the first position in the test leaderboard on the day of submission) and Pascal Context (55.83% mIoU), and performs competitively on Cityscapes. For tackling general dense visual prediction tasks in a cost-effective manner, we further formulate a family of Hierarchical Local-Global (HLG) Transformers, characterized by local attention within windows and global-attention across windows in a pyramidal architecture. Extensive experiments show that our methods achieve appealing performance on a variety of dense prediction tasks (e.g., object detection and instance segmentation and semantic segmentation) as well as image classification. Our code and models are available at //github.com/fudan-zvg/SETR.
Human evaluation plays a crucial role in Natural Language Processing (NLP) as it assesses the quality and relevance of developed systems, thereby facilitating their enhancement. However, the absence of widely accepted human evaluation metrics in NLP hampers fair comparisons among different systems and the establishment of universal assessment standards. Through an extensive analysis of existing literature on human evaluation metrics, we identified several gaps in NLP evaluation methodologies. These gaps served as motivation for developing our own hierarchical evaluation framework. The proposed framework offers notable advantages, particularly in providing a more comprehensive representation of the NLP system's performance. We applied this framework to evaluate the developed Machine Reading Comprehension system, which was utilized within a human-AI symbiosis model. The results highlighted the associations between the quality of inputs and outputs, underscoring the necessity to evaluate both components rather than solely focusing on outputs. In future work, we will investigate the potential time-saving benefits of our proposed framework for evaluators assessing NLP systems.
Large image diffusion models enable novel view synthesis with high quality and excellent zero-shot capability. However, such models based on image-to-image translation have no guarantee of view consistency, limiting the performance for downstream tasks like 3D reconstruction and image-to-3D generation. To empower consistency, we propose Consistent123 to synthesize novel views simultaneously by incorporating additional cross-view attention layers and the shared self-attention mechanism. The proposed attention mechanism improves the interaction across all synthesized views, as well as the alignment between the condition view and novel views. In the sampling stage, such architecture supports simultaneously generating an arbitrary number of views while training at a fixed length. We also introduce a progressive classifier-free guidance strategy to achieve the trade-off between texture and geometry for synthesized object views. Qualitative and quantitative experiments show that Consistent123 outperforms baselines in view consistency by a large margin. Furthermore, we demonstrate a significant improvement of Consistent123 on varying downstream tasks, showing its great potential in the 3D generation field. The project page is available at consistent-123.github.io.
The capture and animation of human hair are two of the major challenges in the creation of realistic avatars for the virtual reality. Both problems are highly challenging, because hair has complex geometry and appearance, as well as exhibits challenging motion. In this paper, we present a two-stage approach that models hair independently from the head to address these challenges in a data-driven manner. The first stage, state compression, learns a low-dimensional latent space of 3D hair states containing motion and appearance, via a novel autoencoder-as-a-tracker strategy. To better disentangle the hair and head in appearance learning, we employ multi-view hair segmentation masks in combination with a differentiable volumetric renderer. The second stage learns a novel hair dynamics model that performs temporal hair transfer based on the discovered latent codes. To enforce higher stability while driving our dynamics model, we employ the 3D point-cloud autoencoder from the compression stage for de-noising of the hair state. Our model outperforms the state of the art in novel view synthesis and is capable of creating novel hair animations without having to rely on hair observations as a driving signal. Project page is here //ziyanw1.github.io/neuwigs/.
Spatio-temporal coherency is a major challenge in synthesizing high quality videos, particularly in synthesizing human videos that contain rich global and local deformations. To resolve this challenge, previous approaches have resorted to different features in the generation process aimed at representing appearance and motion. However, in the absence of strict mechanisms to guarantee such disentanglement, a separation of motion from appearance has remained challenging, resulting in spatial distortions and temporal jittering that break the spatio-temporal coherency. Motivated by this, we here propose LEO, a novel framework for human video synthesis, placing emphasis on spatio-temporal coherency. Our key idea is to represent motion as a sequence of flow maps in the generation process, which inherently isolate motion from appearance. We implement this idea via a flow-based image animator and a Latent Motion Diffusion Model (LMDM). The former bridges a space of motion codes with the space of flow maps, and synthesizes video frames in a warp-and-inpaint manner. LMDM learns to capture motion prior in the training data by synthesizing sequences of motion codes. Extensive quantitative and qualitative analysis suggests that LEO significantly improves coherent synthesis of human videos over previous methods on the datasets TaichiHD, FaceForensics and CelebV-HQ. In addition, the effective disentanglement of appearance and motion in LEO allows for two additional tasks, namely infinite-length human video synthesis, as well as content-preserving video editing.
This is a technical report for the GigaCrowd challenge. Reconstructing 3D crowds from monocular images is a challenging problem due to mutual occlusions, server depth ambiguity, and complex spatial distribution. Since no large-scale 3D crowd dataset can be used to train a robust model, the current multi-person mesh recovery methods can hardly achieve satisfactory performance in crowded scenes. In this paper, we exploit the crowd features and propose a crowd-constrained optimization to improve the common single-person method on crowd images. To avoid scale variations, we first detect human bounding-boxes and 2D poses from the original images with off-the-shelf detectors. Then, we train a single-person mesh recovery network using existing in-the-wild image datasets. To promote a more reasonable spatial distribution, we further propose a crowd constraint to refine the single-person network parameters. With the optimization, we can obtain accurate body poses and shapes with reasonable absolute positions from a large-scale crowd image using a single-person backbone. The code will be publicly available at~\url{//github.com/boycehbz/CrowdRec}.