亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Navigating multi-robot systems in complex terrains has always been a challenging task. This is due to the inherent limitations of traditional robots in collision avoidance, adaptation to unknown environments, and sustained energy efficiency. In order to overcome these limitations, this research proposes a solution by integrating living insects with miniature electronic controllers to enable robotic-like programmable control, and proposing a novel control algorithm for swarming. Although these creatures, called cyborg insects, have the ability to instinctively avoid collisions with neighbors and obstacles while adapting to complex terrains, there is a lack of literature on the control of multi-cyborg systems. This research gap is due to the difficulty in coordinating the movements of a cyborg system under the presence of insects' inherent individual variability in their reactions to control input. In response to this issue, we propose a novel swarm navigation algorithm addressing these challenges. The effectiveness of the algorithm is demonstrated through an experimental validation in which a cyborg swarm was successfully navigated through an unknown sandy field with obstacles and hills. This research contributes to the domain of swarm robotics and showcases the potential of integrating biological organisms with robotics and control theory to create more intelligent autonomous systems with real-world applications.

相關內容

This paper presents a learnable solver tailored to iteratively solve sparse linear systems from discretized partial differential equations (PDEs). Unlike traditional approaches relying on specialized expertise, our solver streamlines the algorithm design process for a class of PDEs through training, which requires only training data of coefficient distributions. The proposed method is anchored by three core principles: (1) a multilevel hierarchy to promote rapid convergence, (2) adherence to linearity concerning the right-hand-side of equations, and (3) weights sharing across different levels to facilitate adaptability to various problem sizes. Built on these foundational principles and considering the similar computation pattern of the convolutional neural network (CNN) as multigrid components, we introduce a network adept at solving linear systems from PDEs with heterogeneous coefficients, discretized on structured grids. Notably, our proposed solver possesses the ability to generalize over right-hand-side terms, PDE coefficients, and grid sizes, thereby ensuring its training is purely offline. To evaluate its effectiveness, we train the solver on convection-diffusion equations featuring heterogeneous diffusion coefficients. The solver exhibits swift convergence to high accuracy over a range of grid sizes, extending from $31 \times 31$ to $4095 \times 4095$. Remarkably, our method outperforms the classical Geometric Multigrid (GMG) solver, demonstrating a speedup of approximately 3 to 8 times. Furthermore, our numerical investigation into the solver's capacity to generalize to untrained coefficient distributions reveals promising outcomes.

The increasing reliance on Deep Learning models, combined with their inherent lack of transparency, has spurred the development of a novel field of study known as eXplainable AI (XAI) methods. These methods seek to enhance the trust of end-users in automated systems by providing insights into the rationale behind their decisions. This paper presents a novel approach for measuring user trust in XAI systems, allowing their refinement. Our proposed metric combines both performance metrics and trust indicators from an objective perspective. To validate this novel methodology, we conducted a case study in a realistic medical scenario: the usage of XAI system for the detection of pneumonia from x-ray images.

We describe group sequential tests which efficiently incorporate information from multiple endpoints allowing for early stopping at pre-planned interim analyses. We formulate a testing procedure where several outcomes are examined, and interim decisions are based on a global summary statistic. An error spending approach to this problem is defined which allows for unpredictable group sizes and nuisance parameters such as the correlation between endpoints. We present and compare three methods for implementation of the testing procedure including numerical integration, the Delta approximation and Monte Carlo simulation. In our evaluation, numerical integration techniques performed best for implementation with error rate calculations accurate to five decimal places. Our proposed testing method is flexible and accommodates summary statistics derived from general, non-linear functions of endpoints informed by the statistical model. Type 1 error rates are controlled, and sample size calculations can easily be performed to satisfy power requirements.

Popular artificial neural networks (ANN) optimize parameters for unidirectional value propagation, assuming some guessed parametrization type like Multi-Layer Perceptron (MLP) or Kolmogorov-Arnold Network (KAN). In contrast, for biological neurons e.g. "it is not uncommon for axonal propagation of action potentials to happen in both directions" \cite{axon} - suggesting they are optimized to continuously operate in multidirectional way. Additionally, statistical dependencies a single neuron could model is not just (expected) value dependence, but entire joint distributions including also higher moments. Such agnostic joint distribution neuron would allow for multidirectional propagation (of distributions or values) e.g. $\rho(x|y,z)$ or $\rho(y,z|x)$ by substituting to $\rho(x,y,z)$ and normalizing. There will be discussed Hierarchical Correlation Reconstruction (HCR) for such neuron model: assuming $\rho(x,y,z)=\sum_{ijk} a_{ijk} f_i(x) f_j(y) f_k(z)$ type parametrization of joint distribution with polynomial basis $f_i$, which allows for flexible, inexpensive processing including nonlinearities, direct model estimation and update, trained through standard backpropagation or novel ways for such structure up to tensor decomposition. Using only pairwise (input-output) dependencies, its expected value prediction becomes KAN-like with trained activation functions as polynomials, can be extended by adding higher order dependencies through included products - in conscious interpretable way, allowing for multidirectional propagation of both values and probability densities.

The multigrid V-cycle method is a popular method for solving systems of linear equations. It computes an approximate solution by using smoothing on fine levels and solving a system of linear equations on the coarsest level. Solving on the coarsest level depends on the size and difficulty of the problem. If the size permits, it is typical to use a direct method based on LU or Cholesky decomposition. In settings with large coarsest-level problems, approximate solvers such as iterative Krylov subspace methods, or direct methods based on low-rank approximation, are often used. The accuracy of the coarsest-level solver is typically determined based on the experience of the users with the concrete problems and methods. In this paper we present an approach to analyzing the effects of approximate coarsest-level solves on the convergence of the V-cycle method for symmetric positive definite problems. Using these results, we derive coarsest-level stopping criterion through which we may control the difference between the approximation computed by a V-cycle method with approximate coarsest-level solver and the approximation which would be computed if the coarsest-level problems were solved exactly. The coarsest-level stopping criterion may thus be set up such that the V-cycle method converges to a chosen finest-level accuracy in (nearly) the same number of V-cycle iterations as the V-cycle method with exact coarsest-level solver. We also utilize the theoretical results to discuss how the convergence of the V-cycle method may be affected by the choice of a tolerance in a coarsest-level stopping criterion based on the relative residual norm.

Some hyperbolic systems are known to include implicit preservation of differential constraints: these are for example the time conservation of the curl or the divergence of a vector that appear as an implicit constraint. In this article, we show that this kind of constraint can be easily conserved at the discrete level with the classical discontinuous Galerkin method, provided the right approximation space is used for the vectorial space, and under some mild assumption on the numerical flux. For this, we develop a discrete differential geometry framework for some well chosen piece-wise polynomial vector approximation space. More precisely, we define the discrete Hodge star operator, the exterior derivative, and their adjoints. The discrete adjoint divergence and curl are proven to be exactly preserved by the discontinuous Galerkin method under a small assumption on the numerical flux. Numerical tests are performed on the wave system, the two dimensional Maxwell system and the induction equation, and confirm that the differential constraints are preserved at machine precision while keeping the high order of accuracy.

This manuscript derives locally weighted ensemble Kalman methods from the point of view of ensemble-based function approximation. This is done by using pointwise evaluations to build up a local linear or quadratic approximation of a function, tapering off the effect of distant particles via local weighting. This introduces a candidate method (the locally weighted Ensemble Kalman method for inversion) with the motivation of combining some of the strengths of the particle filter (ability to cope with nonlinear maps and non-Gaussian distributions) and the Ensemble Kalman filter (no filter degeneracy).

Group testing, a method that screens subjects in pooled samples rather than individually, has been employed as a cost-effective strategy for chlamydia screening among Iowa residents. In efforts to deepen our understanding of chlamydia epidemiology in Iowa, several group testing regression models have been proposed. Different than previous approaches, we expand upon the varying coefficient model to capture potential age-varying associations with chlamydia infection risk. In general, our model operates within a Bayesian framework, allowing regression associations to vary with a covariate of key interest. We employ a stochastic search variable selection process for regularization in estimation. Additionally, our model can integrate random effects to consider potential geographical factors and estimate unknown assay accuracy probabilities. The performance of our model is assessed through comprehensive simulation studies. Upon application to the Iowa group testing dataset, we reveal a significant age-varying racial disparity in chlamydia infections. We believe this discovery has the potential to inform the enhancement of interventions and prevention strategies, leading to more effective chlamydia control and management, thereby promoting health equity across all populations.

As more distributed energy resources become part of the demand-side infrastructure, it is important to quantify the energy flexibility they provide on a community scale, particularly to understand the impact of geographic, climatic, and occupant behavioral differences on their effectiveness, as well as identify the best control strategies to accelerate their real-world adoption. CityLearn provides an environment for benchmarking simple and advanced distributed energy resource control algorithms including rule-based, model-predictive, and reinforcement learning control. CityLearn v2 presented here extends CityLearn v1 by providing a simulation environment that leverages the End-Use Load Profiles for the U.S. Building Stock dataset to create virtual grid-interactive communities for resilient, multi-agent distributed energy resources and objective control with dynamic occupant feedback. This work details the v2 environment design and provides application examples that utilize reinforcement learning to manage battery energy storage system charging/discharging cycles, vehicle-to-grid control, and thermal comfort during heat pump power modulation.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司