Demand response (DR) plays a critical role in ensuring efficient electricity consumption and optimal use of network assets. Yet, existing DR models often overlook a crucial element, the irrational behaviour of electricity end users. In this work, we propose a price-responsive model that incorporates key aspects of end-user irrationality, specifically loss aversion, time inconsistency, and bounded rationality. To this end, we first develop a framework that uses Multiple Seasonal-Trend decomposition using Loess (MSTL) and non-stationary Gaussian processes to model the randomness in the electricity consumption by residential consumers. The impact of this model is then evaluated through a community battery storage (CBS) business model. Additionally, we apply a chance-constrained optimisation model for CBS operation that deals with the unpredictability of the end-user irrationality. Our simulations using real-world data show that the proposed DR model provides a more realistic estimate of end-user price-responsive behaviour when considering irrationality. Compared to a deterministic model that cannot fully take into account the irrational behaviour of end users, the chance-constrained CBS operation model yields an additional 19% revenue. Lastly, the business model reduces the electricity costs of solar end users by 11%.
In recommender systems, the presentation of explanations plays a crucial role in supporting users' decision-making processes. Although numerous existing studies have focused on the effects (transparency or persuasiveness) of explanation content, explanation expression is largely overlooked. Tone, such as formal and humorous, is directly linked to expressiveness and is an important element in human communication. However, studies on the impact of tone on explanations within the context of recommender systems are insufficient. Therefore, this study investigates the effect of explanation tones through an online user study from three aspects: perceived effects, domain differences, and user attributes. We create a dataset using a large language model to generate fictional items and explanations with various tones in the domain of movies, hotels, and home products. Collected data analysis reveals different perceived effects of tones depending on the domains. Moreover, user attributes such as age and personality traits are found to influence the impact of tone. This research underscores the critical role of tones in explanations within recommender systems, suggesting that attention to tone can enhance user experience.
Perceptual sound matching (PSM) aims to find the input parameters to a synthesizer so as to best imitate an audio target. Deep learning for PSM optimizes a neural network to analyze and reconstruct prerecorded samples. In this context, our article addresses the problem of designing a suitable loss function when the training set is generated by a differentiable synthesizer. Our main contribution is perceptual-neural-physical loss (PNP), which aims at addressing a tradeoff between perceptual relevance and computational efficiency. The key idea behind PNP is to linearize the effect of synthesis parameters upon auditory features in the vicinity of each training sample. The linearization procedure is massively paralellizable, can be precomputed, and offers a 100-fold speedup during gradient descent compared to differentiable digital signal processing (DDSP). We demonstrate PNP on two datasets of nonstationary sounds: an AM/FM arpeggiator and a physical model of rectangular membranes. We show that PNP is able to accelerate DDSP with joint time-frequency scattering transform (JTFS) as auditory feature, while preserving its perceptual fidelity. Additionally, we evaluate the impact of other design choices in PSM: parameter rescaling, pretraining, auditory representation, and gradient clipping. We report state-of-the-art results on both datasets and find that PNP-accelerated JTFS has greater influence on PSM performance than any other design choice.
We propose SelfVC, a training strategy to iteratively improve a voice conversion model with self-synthesized examples. Previous efforts on voice conversion focus on factorizing speech into explicitly disentangled representations that separately encode speaker characteristics and linguistic content. However, disentangling speech representations to capture such attributes using task-specific loss terms can lead to information loss. In this work, instead of explicitly disentangling attributes with loss terms, we present a framework to train a controllable voice conversion model on entangled speech representations derived from self-supervised learning (SSL) and speaker verification models. First, we develop techniques to derive prosodic information from the audio signal and SSL representations to train predictive submodules in the synthesis model. Next, we propose a training strategy to iteratively improve the synthesis model for voice conversion, by creating a challenging training objective using self-synthesized examples. We demonstrate that incorporating such self-synthesized examples during training improves the speaker similarity of generated speech as compared to a baseline voice conversion model trained solely on heuristically perturbed inputs. Our framework is trained without any text and achieves state-of-the-art results in zero-shot voice conversion on metrics evaluating naturalness, speaker similarity, and intelligibility of synthesized audio.
Transimpedance amplifiers (TIA) play a crucial role in various electronic systems, especially in optical signal acquisition. However, their performance is often hampered by saturation issues due to high input currents, leading to prolonged recovery times. This paper addresses this challenge by introducing a novel approach utilizing a memristive automatic gain control (AGC) to adjust the TIA's gain and enhance its dynamic range. We replace the typical feedback resistor of a TIA with a valence-change mechanism (VCM) memristor. This substitution enables the TIA to adapt to a broader range of input signals, leveraging the substantial OFF/ON resistance ratio of the memristor. This paper also presents the reading and resetting sub-circuits essential for monitoring and controling the memristor's state. The proposed circuit is evaluated through SPICE simulations. Furthermore, we extend our evaluation to practical testing using a printed circuit board (PCB) integrating the TIA and memristor. We show a remarkable 40 dB increase in the dynamic range of our TIA memristor circuit compared to traditional resistor-based TIAs.
Researchers and practitioners operating on a limited budget face the cost-performance trade-off dilemma. The challenging decision often centers on whether to use a large LLM with better performance or a smaller one with reduced costs. This has motivated recent research in the optimisation of LLM calls. Either a cascading strategy is used, where a smaller LLM or both are called sequentially, or a routing strategy is used, where only one model is ever called. Both scenarios are dependent on a decision criterion which is typically implemented by an extra neural model. In this work, we propose a simpler solution; we use only the uncertainty of the generations of the small LLM as the decision criterion. We compare our approach with both cascading and routing strategies using three different pairs of pre-trained small and large LLMs, on nine different tasks and against approaches that require an additional neural model. Our experiments reveal this simple solution optimally balances cost and performance, outperforming existing methods on 25 out of 27 experimental setups.
Social bots play a significant role in many online social networks (OSN) as they imitate human behavior. This fact raises difficult questions about their capabilities and potential risks. Given the recent advances in Generative AI (GenAI), social bots are capable of producing highly realistic and complex content that mimics human creativity. As the malicious social bots emerge to deceive people with their unrealistic content, identifying them and distinguishing the content they produce has become an actual challenge for numerous social platforms. Several approaches to this problem have already been proposed in the literature, but the proposed solutions have not been widely evaluated. To address this issue, we evaluate the behavior of a text-based bot detector in a competitive environment where some scenarios are proposed: \textit{First}, the tug-of-war between a bot and a bot detector is examined. It is interesting to analyze which party is more likely to prevail and which circumstances influence these expectations. In this regard, we model the problem as a synthetic adversarial game in which a conversational bot and a bot detector are engaged in strategic online interactions. \textit{Second}, the bot detection model is evaluated under attack examples generated by a social bot; to this end, we poison the dataset with attack examples and evaluate the model performance under this condition. \textit{Finally}, to investigate the impact of the dataset, a cross-domain analysis is performed. Through our comprehensive evaluation of different categories of social bots using two benchmark datasets, we were able to demonstrate some achivement that could be utilized in future works.
Nowadays, a majority of System-on-Chips (SoCs) make use of Intellectual Property (IP) in order to shorten development cycles. When such IPs are developed, one of the main focuses lies in the high configurability of the design. This flexibility on the design side introduces the challenge of covering a huge state space of IP configurations on the verification side to ensure the functional correctness under every possible parameter setting. The vast number of possibilities does not allow a brute-force approach, and therefore, only a selected number of settings based on typical and extreme assumptions are usually verified. Especially in automotive applications, which need to follow the ISO 26262 functional safety standard, the requirement of covering all significant variants needs to be fulfilled in any case. State-of-the-Art existing verification techniques such as simulation-based verification and formal verification have challenges such as time-space explosion and state-space explosion respectively and therefore, lack behind in verifying highly configurable digital designs efficiently. This paper is focused on a semi-formal verification methodology for efficient configuration coverage of highly configurable digital designs. The methodology focuses on reduced runtime based on simulative and formal methods that allow high configuration coverage. The paper also presents the results when the developed methodology was applied on a highly configurable microprocessor IP and discusses the gained benefits.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Human-centric perception plays a vital role in vision and graphics. But their data annotations are prohibitively expensive. Therefore, it is desirable to have a versatile pre-train model that serves as a foundation for data-efficient downstream tasks transfer. To this end, we propose the Human-Centric Multi-Modal Contrastive Learning framework HCMoCo that leverages the multi-modal nature of human data (e.g. RGB, depth, 2D keypoints) for effective representation learning. The objective comes with two main challenges: dense pre-train for multi-modality data, efficient usage of sparse human priors. To tackle the challenges, we design the novel Dense Intra-sample Contrastive Learning and Sparse Structure-aware Contrastive Learning targets by hierarchically learning a modal-invariant latent space featured with continuous and ordinal feature distribution and structure-aware semantic consistency. HCMoCo provides pre-train for different modalities by combining heterogeneous datasets, which allows efficient usage of existing task-specific human data. Extensive experiments on four downstream tasks of different modalities demonstrate the effectiveness of HCMoCo, especially under data-efficient settings (7.16% and 12% improvement on DensePose Estimation and Human Parsing). Moreover, we demonstrate the versatility of HCMoCo by exploring cross-modality supervision and missing-modality inference, validating its strong ability in cross-modal association and reasoning.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.