亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While recent works have indicated that federated learning (FL) may be vulnerable to poisoning attacks by compromised clients, their real impact on production FL systems is not fully understood. In this work, we aim to develop a comprehensive systemization for poisoning attacks on FL by enumerating all possible threat models, variations of poisoning, and adversary capabilities. We specifically put our focus on untargeted poisoning attacks, as we argue that they are significantly relevant to production FL deployments. We present a critical analysis of untargeted poisoning attacks under practical, production FL environments by carefully characterizing the set of realistic threat models and adversarial capabilities. Our findings are rather surprising: contrary to the established belief, we show that FL is highly robust in practice even when using simple, low-cost defenses. We go even further and propose novel, state-of-the-art data and model poisoning attacks, and show via an extensive set of experiments across three benchmark datasets how (in)effective poisoning attacks are in the presence of simple defense mechanisms. We aim to correct previous misconceptions and offer concrete guidelines to conduct more accurate (and more realistic) research on this topic.

相關內容

It has been shown that natural language processing (NLP) models are vulnerable to a kind of security threat called the Backdoor Attack, which utilizes a `backdoor trigger' paradigm to mislead the models. The most threatening backdoor attack is the stealthy backdoor, which defines the triggers as text style or syntactic. Although they have achieved an incredible high attack success rate (ASR), we find that the principal factor contributing to their ASR is not the `backdoor trigger' paradigm. Thus the capacity of these stealthy backdoor attacks is overestimated when categorized as backdoor attacks. Therefore, to evaluate the real attack power of backdoor attacks, we propose a new metric called attack successful rate difference (ASRD), which measures the ASR difference between clean state and poison state models. Besides, since the defenses against stealthy backdoor attacks are absent, we propose Trigger Breaker, consisting of two too simple tricks that can defend against stealthy backdoor attacks effectively. Experiments show that our method achieves significantly better performance than state-of-the-art defense methods against stealthy backdoor attacks.

Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs), so that the attacked models perform well on benign samples, whereas their predictions will be maliciously changed if the hidden backdoor is activated by attacker-specified triggers. This threat could happen when the training process is not fully controlled, such as training on third-party datasets or adopting third-party models, which poses a new and realistic threat. Although backdoor learning is an emerging and rapidly growing research area, its systematic review, however, remains blank. In this paper, we present the first comprehensive survey of this realm. We summarize and categorize existing backdoor attacks and defenses based on their characteristics, and provide a unified framework for analyzing poisoning-based backdoor attacks. Besides, we also analyze the relation between backdoor attacks and relevant fields ($i.e.,$ adversarial attacks and data poisoning), and summarize widely adopted benchmark datasets. Finally, we briefly outline certain future research directions relying upon reviewed works. A curated list of backdoor-related resources is also available at \url{//github.com/THUYimingLi/backdoor-learning-resources}.

Over the years, most research towards defenses against adversarial attacks on machine learning models has been in the image processing domain. The malware detection domain has received less attention despite its importance. Moreover, most work exploring defenses focuses on feature-based, gradient-based or randomized methods but with no strategy when applying them. In this paper, we introduce StratDef, which is a strategic defense system tailored for the malware detection domain based on a Moving Target Defense and Game Theory approach. We overcome challenges related to the systematic construction, selection and strategic use of models to maximize adversarial robustness. StratDef dynamically and strategically chooses the best models to increase the uncertainty for the attacker, whilst minimizing critical aspects in the adversarial ML domain like attack transferability. We provide the first comprehensive evaluation of defenses against adversarial attacks on machine learning for malware detection, where our threat model explores different levels of threat, attacker knowledge, capabilities, and attack intensities. We show that StratDef performs better than other defenses even when facing the peak adversarial threat. We also show that, from the existing defenses, only a few adversarially-trained models provide substantially better protection than just using vanilla models but are still outperformed by StratDef.

Artificial Intelligence (AI) relies heavily on deep learning - a technology that is becoming increasingly popular in real-life applications of AI, even in the safety-critical and high-risk domains. However, it is recently discovered that deep learning can be manipulated by embedding Trojans inside it. Unfortunately, pragmatic solutions to circumvent the computational requirements of deep learning, e.g. outsourcing model training or data annotation to third parties, further add to model susceptibility to the Trojan attacks. Due to the key importance of the topic in deep learning, recent literature has seen many contributions in this direction. We conduct a comprehensive review of the techniques that devise Trojan attacks for deep learning and explore their defenses. Our informative survey systematically organizes the recent literature and discusses the key concepts of the methods while assuming minimal knowledge of the domain on the readers part. It provides a comprehensible gateway to the broader community to understand the recent developments in Neural Trojans.

By combining Federated Learning with Differential Privacy, it has become possible to train deep models while taking privacy into account. Using Local Differential Privacy (LDP) does not require trust in the server, but its utility is limited due to strong gradient perturbations. On the other hand, client-level Central Differential Privacy (CDP) provides a good balance between the privacy and utility of the trained model, but requires trust in the central server since they have to share raw gradients. We propose OLIVE, a system that can benefit from CDP while eliminating the need for trust in the server as LDP achieves, by using Trusted Execution Environment (TEE), which has attracted much attention in recent years. In particular, OLIVE provides an efficient data oblivious algorithm to minimize the privacy risk that can occur during aggregation in a TEE even on a privileged untrusted server. In this work, firstly, we design an inference attack to leak training data privacy from index information of gradients which can be obtained by side channels in a sparsified gradients setting, and demonstrate the attack's effectiveness on real world dataset. Secondly, we propose a fully-oblivious but efficient algorithm that keeps the memory access patterns completely uniform and secure to protect privacy against the designed attack. We also demonstrate that our method works practically by various empirical experiments. Our experimental results show our proposed algorithm is more efficient compared to state-of-the-art general-purpose Oblivious RAM, and can be a practical method in the real-world scales.

Federated learning (FL) allows the collaborative training of AI models without needing to share raw data. This capability makes it especially interesting for healthcare applications where patient and data privacy is of utmost concern. However, recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data. In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack that works for more realistic scenarios where the clients' training involves updating the Batch Normalization (BN) statistics. Furthermore, we present new ways to measure and visualize potential data leakage in FL. Our work is a step towards establishing reproducible methods of measuring data leakage in FL and could help determine the optimal tradeoffs between privacy-preserving techniques, such as differential privacy, and model accuracy based on quantifiable metrics.

Advances in distributed machine learning can empower future communications and networking. The emergence of federated learning (FL) has provided an efficient framework for distributed machine learning, which, however, still faces many security challenges. Among them, model poisoning attacks have a significant impact on the security and performance of FL. Given that there have been many studies focusing on defending against model poisoning attacks, it is necessary to survey the existing work and provide insights to inspire future research. In this paper, we first classify defense mechanisms for model poisoning attacks into two categories: evaluation methods for local model updates and aggregation methods for the global model. Then, we analyze some of the existing defense strategies in detail. We also discuss some potential challenges and future research directions. To the best of our knowledge, we are the first to survey defense methods for model poisoning attacks in FL.

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

In federated learning, multiple client devices jointly learn a machine learning model: each client device maintains a local model for its local training dataset, while a master device maintains a global model via aggregating the local models from the client devices. The machine learning community recently proposed several federated learning methods that were claimed to be robust against Byzantine failures (e.g., system failures, adversarial manipulations) of certain client devices. In this work, we perform the first systematic study on local model poisoning attacks to federated learning. We assume an attacker has compromised some client devices, and the attacker manipulates the local model parameters on the compromised client devices during the learning process such that the global model has a large testing error rate. We formulate our attacks as optimization problems and apply our attacks to four recent Byzantine-robust federated learning methods. Our empirical results on four real-world datasets show that our attacks can substantially increase the error rates of the models learnt by the federated learning methods that were claimed to be robust against Byzantine failures of some client devices. We generalize two defenses for data poisoning attacks to defend against our local model poisoning attacks. Our evaluation results show that one defense can effectively defend against our attacks in some cases, but the defenses are not effective enough in other cases, highlighting the need for new defenses against our local model poisoning attacks to federated learning.

北京阿比特科技有限公司