亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The automotive industry is experiencing a transition from assisted to highly automated driving. New concepts for validation of Automated Driving System (ADS) include amongst other a shift from a "technology based" approach to a "scenario based" assessment. The safety validation and type approval process of ADS are seen as the biggest challenges for the automotive industry today. Having in mind a variety of existing white papers, standardization activities and regulatory approaches, manufactures still struggle with selecting the best practices that keep aligned with their Safety Management System and Safety Culture. A step forward would be to implement a harmonized global safety assurance scheme that is compliant with relevant regulations, laws, standards, and reflects local rules. Today many communities (regulatory bodies, local authorities, industrial stake-holders) work on proof-of-concept framework for the Safety Argumentation as an answer to this problem. Unfortunately, there is still no consensus on one definitive methodology and a set of safety metrics to measure ADS safety. An objective of this summary report is to facilitate a comprehensive review and analysis of the literature concerning available methods and approaches for vehicle safety, engineering frameworks, processes of scenario-based evaluation and a vendor- and technology-neutral Safety Argumentation approaches and tools.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

In the past decade, the technology industry has adopted online randomized controlled experiments (a.k.a. A/B testing) to guide product development and make business decisions. In practice, A/B tests are often implemented with increasing treatment allocation: the new treatment is gradually released to an increasing number of units through a sequence of randomized experiments. In scenarios such as experimenting in a social network setting or in a bipartite online marketplace, interference among units may exist, which can harm the validity of simple inference procedures. In this work, we introduce a widely applicable procedure to test for interference in A/B testing with increasing allocation. Our procedure can be implemented on top of an existing A/B testing platform with a separate flow and does not require a priori a specific interference mechanism. In particular, we introduce two permutation tests that are valid under different assumptions. Firstly, we introduce a general statistical test for interference requiring no additional assumption. Secondly, we introduce a testing procedure that is valid under a time fixed effect assumption. The testing procedure is of very low computational complexity, it is powerful, and it formalizes a heuristic algorithm implemented already in industry. We demonstrate the performance of the proposed testing procedure through simulations on synthetic data. Finally, we discuss one application at LinkedIn, where a screening step is implemented to detect potential interference in all their marketplace experiments with the proposed methods in the paper.

Deep reinforcement learning is actively used for training autonomous car policies in a simulated driving environment. Due to the large availability of various reinforcement learning algorithms and the lack of their systematic comparison across different driving scenarios, we are unsure of which ones are more effective for training autonomous car software in single-agent as well as multi-agent driving environments. A benchmarking framework for the comparison of deep reinforcement learning in a vision-based autonomous driving will open up the possibilities for training better autonomous car driving policies. To address these challenges, we provide an open and reusable benchmarking framework for systematic evaluation and comparative analysis of deep reinforcement learning algorithms for autonomous driving in a single- and multi-agent environment. Using the framework, we perform a comparative study of discrete and continuous action space deep reinforcement learning algorithms. We also propose a comprehensive multi-objective reward function designed for the evaluation of deep reinforcement learning-based autonomous driving agents. We run the experiments in a vision-only high-fidelity urban driving simulated environments. The results indicate that only some of the deep reinforcement learning algorithms perform consistently better across single and multi-agent scenarios when trained in various multi-agent-only environment settings. For example, A3C- and TD3-based autonomous cars perform comparatively better in terms of more robust actions and minimal driving errors in both single and multi-agent scenarios. We conclude that different deep reinforcement learning algorithms exhibit different driving and testing performance in different scenarios, which underlines the need for their systematic comparative analysis. The benchmarking framework proposed in this paper facilitates such a comparison.

The deployment of low earth orbit (LEO) satellites with terrestrial networks can potentially increase the efficiency and reduce the cost of relaying content from a data center to a set of edge caches hosted by 6G and beyond enabled macro base stations. In this work, the characteristics of the communication system and the mobility of LEO satellites are thoroughly discussed to describe the channel characteristics of LEO satellites, in terms of their frequency bands, latency, Doppler shifts, fading effects, and satellite access. Three different scenarios are proposed for the relay of data from data centers to edge caches via LEO satellites, which are the "Immediate Forward", "Relay and Forward", and "Store and Forward" scenarios. A comparative problem formulation is utilized to obtain numerical results from simulations to demonstrate the effectiveness and validity as well as the trade-offs of the proposed system model. The simulation results indicate that the integration of LEO satellites in edge caching for 6G and beyond networks decreased the required transmission power for relaying the data from the data center to the edge caches. Future research directions based on the proposed model are discussed.

Federated learning has gained popularity as a means of training models distributed across the wireless edge. The paper introduces delay-aware federated learning (DFL) to improve the efficiency of distributed machine learning (ML) model training by addressing communication delays between edge and cloud. DFL employs multiple stochastic gradient descent iterations on device datasets during each global aggregation interval and intermittently aggregates model parameters through edge servers in local subnetworks. The cloud server synchronizes the local models with the global deployed model computed via a local-global combiner at global synchronization. The convergence behavior of DFL is theoretically investigated under a generalized data heterogeneity metric. A set of conditions is obtained to achieve the sub-linear convergence rate of O(1/k). Based on these findings, an adaptive control algorithm is developed for DFL, implementing policies to mitigate energy consumption and edge-to-cloud communication latency while aiming for a sublinear convergence rate. Numerical evaluations show DFL's superior performance in terms of faster global model convergence, reduced resource consumption, and robustness against communication delays compared to existing FL algorithms. In summary, this proposed method offers improved efficiency and satisfactory results when dealing with both convex and non-convex loss functions.

This paper examines the art practices, artwork, and motivations of prolific users of the latest generation of text-to-image models. Through interviews, observations, and a user survey, we present a sampling of the artistic styles and describe the developed community of practice around generative AI. We find that: 1) the text prompt and the resulting image can be considered collectively as an art piece prompts as art and 2) prompt templates (prompts with ``slots'' for others to fill in with their own words) are developed to create generative art styles. We discover that the value placed by this community on unique outputs leads to artists seeking specialized vocabulary to produce distinctive art pieces (e.g., by reading architectural blogs to find phrases to describe images). We also find that some artists use "glitches" in the model that can be turned into artistic styles of their own right. From these findings, we outline specific implications for design regarding future prompting and image editing options.

With the proliferation of devices that display augmented reality (AR), now is the time for scholars and practitioners to evaluate and engage critically with emerging applications of the medium. AR mediates the way users see their bodies, hear their environment and engage with places. Applied in various forms, including social media, e-commerce, gaming, enterprise and art, the medium facilitates a hybrid experience of physical and digital spaces. This article employs a model of real-and-imagined space from geographer Edward Soja to examine how the user of an AR app navigates the two intertwined spaces of physical and digital, experiencing what Soja calls a 'Third-space'. The article illustrates the potential for headset-based AR to engender such a Thirdspace through the author's practice-led research project, the installation Through the Wardrobe. This installation demonstrates how AR has the potential to shift the way that users view and interact with their world with artistic applications providing an opportunity to question assumptions of social norms, identity and uses of physical space.

In recent years, industry leaders and researchers have proposed to use technical provenance standards to address visual misinformation spread through digitally altered media. By adding immutable and secure provenance information such as authorship and edit date to media metadata, social media users could potentially better assess the validity of the media they encounter. However, it is unclear how end users would respond to provenance information, or how to best design provenance indicators to be understandable to laypeople. We conducted an online experiment with 595 participants from the US and UK to investigate how provenance information altered users' accuracy perceptions and trust in visual content shared on social media. We found that provenance information often lowered trust and caused users to doubt deceptive media, particularly when it revealed that the media was composited. We additionally tested conditions where the provenance information itself was shown to be incomplete or invalid, and found that these states have a significant impact on participants' accuracy perceptions and trust in media, leading them, in some cases, to disbelieve honest media. Our findings show that provenance, although enlightening, is still not a concept well-understood by users, who confuse media credibility with the orthogonal (albeit related) concept of provenance credibility. We discuss how design choices may contribute to provenance (mis)understanding, and conclude with implications for usable provenance systems, including clearer interfaces and user education.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Trust has emerged as a key factor in people's interactions with AI-infused systems. Yet, little is known about what models of trust have been used and for what systems: robots, virtual characters, smart vehicles, decision aids, or others. Moreover, there is yet no known standard approach to measuring trust in AI. This scoping review maps out the state of affairs on trust in human-AI interaction (HAII) from the perspectives of models, measures, and methods. Findings suggest that trust is an important and multi-faceted topic of study within HAII contexts. However, most work is under-theorized and under-reported, generally not using established trust models and missing details about methods, especially Wizard of Oz. We offer several targets for systematic review work as well as a research agenda for combining the strengths and addressing the weaknesses of the current literature.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司