As a reaction to the high infectiousness and lethality of the COVID-19 virus, countries around the world have adopted drastic policy measures to contain the pandemic. However, it remains unclear which effect these measures, so-called non-pharmaceutical interventions (NPIs), have on the spread of the virus. In this article, we use machine learning and apply drift detection methods in a novel way to predict the time lag of policy interventions with respect to the development of daily case numbers of COVID-19 across 9 European countries and 28 US states. Our analysis shows that there are, on average, more than two weeks between NPI enactment and a drift in the case numbers.
While randomized controlled trials (RCTs) are the gold standard for estimating treatment effects in medical research, there is increasing use of and interest in using real-world data for drug development. One such use case is the construction of external control arms for evaluation of efficacy in single-arm trials, particularly in cases where randomization is either infeasible or unethical. However, it is well known that treated patients in non-randomized studies may not be comparable to control patients -- on either measured or unmeasured variables -- and that the underlying population differences between the two groups may result in biased treatment effect estimates as well as increased variability in estimation. To address these challenges for analyses of time-to-event outcomes, we developed a meta-analytic framework that uses historical reference studies to adjust a log hazard ratio estimate in a new external control study for its additional bias and variability. The set of historical studies is formed by constructing external control arms for historical RCTs, and a meta-analysis compares the trial controls to the external control arms. Importantly, a prospective external control study can be performed independently of the meta-analysis using standard causal inference techniques for observational data. We illustrate our approach with a simulation study and an empirical example based on reference studies for advanced non-small cell lung cancer. In our empirical analysis, external control patients had lower survival than trial controls (hazard ratio: 0.907), but our methodology is able to correct for this bias. An implementation of our approach is available in the R package ecmeta.
While digital divide studies primarily focused on access to information and communications technology (ICT) in the past, its influence on other associated dimensions such as privacy is becoming critical with a far-reaching impact on the people and society. For example, the various levels of government legislation and compliance on information privacy worldwide have created a new era of digital divide in the privacy preservation domain. In this article, the concept "digital privacy divide (DPD)" is introduced to describe the perceived gap in the privacy preservation of individuals based on the geopolitical location of different countries. To better understand the DPD phenomenon, we created an online questionnaire and collected answers from more than 700 respondents from four different countries (the United States, Germany, Bangladesh, and India) who come from two distinct cultural orientations as per Hofstede's individualist vs. collectivist society. However, our results revealed some interesting findings. DPD does not depend on Hofstede's cultural orientation of the countries. For example, individuals residing in Germany and Bangladesh share similar privacy concerns, while there is a significant similarity among individuals residing in the United States and India. Moreover, while most respondents acknowledge the importance of privacy legislation to protect their digital privacy, they do not mind their governments to allow domestic companies and organizations collecting personal data on individuals residing outside their countries, if there are economic, employment, and crime prevention benefits. These results suggest a social dilemma in the perceived privacy preservation, which could be dependent on many other contextual factors beyond government legislation and countries' cultural orientation.
Identifying controllable aspects of the environment has proven to be an extraordinary intrinsic motivator to reinforcement learning agents. Despite repeatedly achieving State-of-the-Art results, this approach has only been studied as a proxy to a reward-based task and has not yet been evaluated on its own. We show that solutions relying on action-prediction fail to model critical controlled events. Humans, on the other hand, assign blame to their actions to decide what they controlled. This work proposes Controlled Effect Network (CEN), an unsupervised method based on counterfactual measures of blame to identify effects on the environment controlled by the agent. CEN is evaluated in a wide range of environments showing that it can accurately identify controlled effects. Moreover, we demonstrate CEN's capabilities as intrinsic motivator by integrating it in the state-of-the-art exploration method, achieving substantially better performance than action-prediction models.
One of the difficulties in monitoring an ongoing pandemic is deciding on the metric that best describes its status when multiple highly inter-correlated measurements are available. Having a single measure, such as whether the effective reproduction number R, has been useful in tracking whether the epidemic is on the incline or the decline and for imposing policy interventions to curb the increase. We propose an additional metric for tracking the UK epidemic across all four nations, that can capture the different spatial scales. This paper illustrates how to derive the principal scores from a weighted Principal Component Analysis using publicly available data. We show the detectable impact of interventions on the state of the epidemic and suggest that there is a single dominant trend observable through the principal score, but this is different across nations and waves. For example, the epidemic status can be tracked by cases in Scotland at a countrywide scale, whereas across waves and disjoint nations, hospitalisations are the dominant contributor to principal scores. Thus, our results suggest that hospitalisations may be an additional useful metric for ongoing tracking of the epidemic status across the UK nations alongside R and growth rate.
Mitigating bias in machine learning systems requires refining our understanding of bias propagation pathways: from societal structures to large-scale data to trained models to impact on society. In this work, we focus on one aspect of the problem, namely bias amplification: the tendency of models to amplify the biases present in the data they are trained on. A metric for measuring bias amplification was introduced in the seminal work by Zhao et al. (2017); however, as we demonstrate, this metric suffers from a number of shortcomings including conflating different types of bias amplification and failing to account for varying base rates of protected classes. We introduce and analyze a new, decoupled metric for measuring bias amplification, $\text{BiasAmp}_{\rightarrow}$ (Directional Bias Amplification). We thoroughly analyze and discuss both the technical assumptions and the normative implications of this metric. We provide suggestions about its measurement by cautioning against predicting sensitive attributes, encouraging the use of confidence intervals due to fluctuations in the fairness of models across runs, and discussing the limitations of what this metric captures. Throughout this paper, we work to provide an interrogative look at the technical measurement of bias amplification, guided by our normative ideas of what we want it to encompass.
Modern online advertising systems inevitably rely on personalization methods, such as click-through rate (CTR) prediction. Recent progress in CTR prediction enjoys the rich representation capabilities of deep learning and achieves great success in large-scale industrial applications. However, these methods can suffer from lack of exploration. Another line of prior work addresses the exploration-exploitation trade-off problem with contextual bandit methods, which are less studied in the industry recently due to the difficulty in extending their flexibility with deep models. In this paper, we propose a novel Deep Uncertainty-Aware Learning (DUAL) method to learn deep CTR models based on Gaussian processes, which can provide efficient uncertainty estimations along with the CTR predictions while maintaining the flexibility of deep neural networks. By linking the ability to estimate predictive uncertainties of DUAL to well-known bandit algorithms, we further present DUAL-based Ad-ranking strategies to boost up long-term utilities such as the social welfare in advertising systems. Experimental results on several public datasets demonstrate the effectiveness of our methods. Remarkably, an online A/B test deployed in the Alibaba display advertising platform shows an $8.2\%$ social welfare improvement and an $8.0\%$ revenue lift.
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.
Background: Social media has the capacity to afford the healthcare industry with valuable feedback from patients who reveal and express their medical decision-making process, as well as self-reported quality of life indicators both during and post treatment. In prior work, [Crannell et. al.], we have studied an active cancer patient population on Twitter and compiled a set of tweets describing their experience with this disease. We refer to these online public testimonies as "Invisible Patient Reported Outcomes" (iPROs), because they carry relevant indicators, yet are difficult to capture by conventional means of self-report. Methods: Our present study aims to identify tweets related to the patient experience as an additional informative tool for monitoring public health. Using Twitter's public streaming API, we compiled over 5.3 million "breast cancer" related tweets spanning September 2016 until mid December 2017. We combined supervised machine learning methods with natural language processing to sift tweets relevant to breast cancer patient experiences. We analyzed a sample of 845 breast cancer patient and survivor accounts, responsible for over 48,000 posts. We investigated tweet content with a hedonometric sentiment analysis to quantitatively extract emotionally charged topics. Results: We found that positive experiences were shared regarding patient treatment, raising support, and spreading awareness. Further discussions related to healthcare were prevalent and largely negative focusing on fear of political legislation that could result in loss of coverage. Conclusions: Social media can provide a positive outlet for patients to discuss their needs and concerns regarding their healthcare coverage and treatment needs. Capturing iPROs from online communication can help inform healthcare professionals and lead to more connected and personalized treatment regimens.
Multimodal machine learning algorithms aim to learn visual-textual correspondences. Previous work suggests that concepts with concrete visual manifestations may be easier to learn than concepts with abstract ones. We give an algorithm for automatically computing the visual concreteness of words and topics within multimodal datasets. We apply the approach in four settings, ranging from image captions to images/text scraped from historical books. In addition to enabling explorations of concepts in multimodal datasets, our concreteness scores predict the capacity of machine learning algorithms to learn textual/visual relationships. We find that 1) concrete concepts are indeed easier to learn; 2) the large number of algorithms we consider have similar failure cases; 3) the precise positive relationship between concreteness and performance varies between datasets. We conclude with recommendations for using concreteness scores to facilitate future multimodal research.
Steve Jobs, one of the greatest visionaries of our time was quoted in 1996 saying "a lot of times, people do not know what they want until you show it to them" [38] indicating he advocated products to be developed based on human intuition rather than research. With the advancements of mobile devices, social networks and the Internet of Things, enormous amounts of complex data, both structured and unstructured are being captured in hope to allow organizations to make better business decisions as data is now vital for an organizations success. These enormous amounts of data are referred to as Big Data, which enables a competitive advantage over rivals when processed and analyzed appropriately. However Big Data Analytics has a few concerns including Management of Data-lifecycle, Privacy & Security, and Data Representation. This paper reviews the fundamental concept of Big Data, the Data Storage domain, the MapReduce programming paradigm used in processing these large datasets, and focuses on two case studies showing the effectiveness of Big Data Analytics and presents how it could be of greater good in the future if handled appropriately.