Humans can learn a new word and infer its grammatical properties from very few examples. They have an abstract notion of linguistic properties like grammatical gender and agreement rules that can be applied to novel syntactic contexts and words. Drawing inspiration from psycholinguistics, we conduct a noun learning experiment to assess whether an LSTM and a decoder-only transformer can achieve human-like abstraction of grammatical gender in French. Language models were tasked with learning the gender of a novel noun embedding from a few examples in one grammatical agreement context and predicting agreement in another, unseen context. We find that both language models effectively generalise novel noun gender from one to two learning examples and apply the learnt gender across agreement contexts, albeit with a bias for the masculine gender category. Importantly, the few-shot updates were only applied to the embedding layers, demonstrating that models encode sufficient gender information within the word embedding space. While the generalisation behaviour of models suggests that they represent grammatical gender as an abstract category, like humans, further work is needed to explore the details of how exactly this is implemented. For a comparative perspective with human behaviour, we conducted an analogous one-shot novel noun gender learning experiment, which revealed that native French speakers, like language models, also exhibited a masculine gender bias and are not excellent one-shot learners either.
Modern regression applications can involve hundreds or thousands of variables which motivates the use of variable selection methods. Bayesian variable selection defines a posterior distribution on the possible subsets of the variables (which are usually termed models) to express uncertainty about which variables are strongly linked to the response. This can be used to provide Bayesian model averaged predictions or inference, and to understand the relative importance of different variables. However, there has been little work on meaningful representations of this uncertainty beyond first order summaries. We introduce Cartesian credible sets to address this gap. The elements of these sets are formed by concatenating sub-models defined on each block of a partition of the variables. Investigating these sub-models allow us to understand whether the models in the Cartesian credible set always/never/sometimes include a particular variable or group of variables and provide a useful summary of model uncertainty. We introduce methods to find these sets that emphasize ease of understanding. The potential of the method is illustrated on regression problems with both small and large numbers of variables.
Modern machine learning techniques in the natural language processing domain can be used to automatically generate scripts for goal-oriented dialogue systems. The current article presents a general framework for studying the automatic generation of scripts for goal-oriented dialogue systems. A method for preprocessing dialog data sets in JSON format is described. A comparison is made of two methods for extracting user intent based on BERTopic and latent Dirichlet allocation. A comparison has been made of two implemented algorithms for classifying statements of users of a goal-oriented dialogue system based on logistic regression and BERT transformer models. The BERT transformer approach using the bert-base-uncased model showed better results for the three metrics Precision (0.80), F1-score (0.78) and Matthews correlation coefficient (0.74) in comparison with other methods.
Languages can encode temporal subordination lexically, via subordinating conjunctions, and morphologically, by marking the relation on the predicate. Systematic cross-linguistic variation among the former can be studied using well-established token-based typological approaches to token-aligned parallel corpora. Variation among different morphological means is instead much harder to tackle and therefore more poorly understood, despite being predominant in several language groups. This paper explores variation in the expression of generic temporal subordination ('when'-clauses) among the languages of Latin America and the Caribbean, where morphological marking is particularly common. It presents probabilistic semantic maps computed on the basis of the languages of the region, thus avoiding bias towards the many world's languages that exclusively use lexified connectors, incorporating associations between character $n$-grams and English $when$. The approach allows capturing morphological clause-linkage devices in addition to lexified connectors, paving the way for larger-scale, strategy-agnostic analyses of typological variation in temporal subordination.
Here we consider the problem of all the possible orders of a linguistic structure formed by $n$ elements, for instance, subject, direct object and verb ($n=3$) or subject, direct object, indirect object and verb ($n=4$). We investigate if the frequency of the $n!$ possible orders is constrained by two principles. First, entropy minimization, a principle that has been suggested to shape natural communication systems at distinct levels of organization. Second, swap distance minimization, namely a preference for word orders that require fewer swaps of adjacent elements to be produced from a source order. Here we present average swap distance, a novel score for research on swap distance minimization, and investigate the theoretical distribution of that score for any $n$: its minimum and maximum values and its expected value in die rolling experiments or when the word order frequencies are shuffled. We investigate whether entropy and average swap distance are significantly small in distinct linguistic structures with $n=3$ or $n=4$ in agreement with the corresponding minimization principles. We find strong evidence of entropy minimization and swap distance minimization with respect to a die rolling experiment. The evidence of these two forces with respect to a Polya urn process is strong for $n=4$ but weaker for $n=3$. We still find evidence of swap distance minimization when word order frequencies are shuffled, indicating that swap distance minimization effects are beyond pressure to minimize word order entropy.
Scopus and the Web of Science have been the foundation for research in the science of science even though these traditional databases systematically underrepresent certain disciplines and world regions. In response, new inclusive databases, notably OpenAlex, have emerged. While many studies have begun using OpenAlex as a data source, few critically assess its limitations. This study, conducted in collaboration with the OpenAlex team, addresses this gap by comparing OpenAlex to Scopus across a number of dimensions. The analysis concludes that OpenAlex is a superset of Scopus and can be a reliable alternative for some analyses, particularly at the country level. Despite this, issues of metadata accuracy and completeness show that additional research is needed to fully comprehend and address OpenAlex's limitations. Doing so will be necessary to confidently use OpenAlex across a wider set of analyses, including those that are not at all possible with more constrained databases.
Logistic regression is widely used in many areas of knowledge. Several works compare the performance of lasso and maximum likelihood estimation in logistic regression. However, part of these works do not perform simulation studies and the remaining ones do not consider scenarios in which the ratio of the number of covariates to sample size is high. In this work, we compare the discrimination performance of lasso and maximum likelihood estimation in logistic regression using simulation studies and applications. Variable selection is done both by lasso and by stepwise when maximum likelihood estimation is used. We consider a wide range of values for the ratio of the number of covariates to sample size. The main conclusion of the work is that lasso has a better discrimination performance than maximum likelihood estimation when the ratio of the number of covariates to sample size is high.
We consider covariance parameter estimation for Gaussian processes with functional inputs. From an increasing-domain asymptotics perspective, we prove the asymptotic consistency and normality of the maximum likelihood estimator. We extend these theoretical guarantees to encompass scenarios accounting for approximation errors in the inputs, which allows robustness of practical implementations relying on conventional sampling methods or projections onto a functional basis. Loosely speaking, both consistency and normality hold when the approximation error becomes negligible, a condition that is often achieved as the number of samples or basis functions becomes large. These later asymptotic properties are illustrated through analytical examples, including one that covers the case of non-randomly perturbed grids, as well as several numerical illustrations.
We investigate the proof theory of regular expressions with fixed points, construed as a notation for (omega-)context-free grammars. Starting with a hypersequential system for regular expressions due to Das and Pous, we define its extension by least fixed points and prove soundness and completeness of its non-wellfounded proofs for the standard language model. From here we apply proof-theoretic techniques to recover an infinitary axiomatisation of the resulting equational theory, complete for inclusions of context-free languages. Finally, we extend our syntax by greatest fixed points, now computing omega-context-free languages. We show the soundness and completeness of the corresponding system using a mixture of proof-theoretic and game-theoretic techniques.
Splitting methods are a widely used numerical scheme for solving convection-diffusion problems. However, they may lose stability in some situations, particularly when applied to convection-diffusion problems in the presence of an unbounded convective term. In this paper, we propose a new splitting method, called the "Adapted Lie splitting method", which successfully overcomes the observed instability in certain cases. Assuming that the unbounded coefficient belongs to a suitable Lorentz space, we show that the adapted Lie splitting converges to first-order under the analytic semigroup framework. Furthermore, we provide numerical experiments to illustrate our newly proposed splitting approach.
Shannon defined the mutual information between two variables. We illustrate why the true mutual information between a variable and the predictions made by a prediction algorithm is not a suitable measure of prediction quality, but the apparent Shannon mutual information (ASI) is; indeed it is the unique prediction quality measure with either of two very different lists of desirable properties, as previously shown by de Finetti and other authors. However, estimating the uncertainty of the ASI is a difficult problem, because of long and non-symmetric heavy tails to the distribution of the individual values of $j(x,y)=\log\frac{Q_y(x)}{P(x)}$ We propose a Bayesian modelling method for the distribution of $j(x,y)$, from the posterior distribution of which the uncertainty in the ASI can be inferred. This method is based on Dirichlet-based mixtures of skew-Student distributions. We illustrate its use on data from a Bayesian model for prediction of the recurrence time of prostate cancer. We believe that this approach is generally appropriate for most problems, where it is infeasible to derive the explicit distribution of the samples of $j(x,y)$, though the precise modelling parameters may need adjustment to suit particular cases.