亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Diffusion Transformers (DiTs) have recently gained substantial attention in both industrial and academic fields for their superior visual generation capabilities, outperforming traditional diffusion models that use U-Net. However,the enhanced performance of DiTs also comes with high parameter counts and implementation costs, seriously restricting their use on resource-limited devices such as mobile phones. To address these challenges, we introduce the Hybrid Floating-point Quantization for DiT(HQ-DiT), an efficient post-training quantization method that utilizes 4-bit floating-point (FP) precision on both weights and activations for DiT inference. Compared to fixed-point quantization (e.g., INT8), FP quantization, complemented by our proposed clipping range selection mechanism, naturally aligns with the data distribution within DiT, resulting in a minimal quantization error. Furthermore, HQ-DiT also implements a universal identity mathematical transform to mitigate the serious quantization error caused by the outliers. The experimental results demonstrate that DiT can achieve extremely low-precision quantization (i.e., 4 bits) with negligible impact on performance. Our approach marks the first instance where both weights and activations in DiTs are quantized to just 4 bits, with only a 0.12 increase in sFID on ImageNet.

相關內容

Large Language Models (LLMs) have demonstrated their capabilities across various tasks, from language translation to complex reasoning. Understanding and predicting human behavior and biases are crucial for artificial intelligence (AI) assisted systems to provide useful assistance, yet it remains an open question whether these models can achieve this. This paper addresses this gap by leveraging the reasoning and generative capabilities of the LLMs to predict human behavior in two sequential decision-making tasks. These tasks involve balancing between exploitative and exploratory actions and handling delayed feedback, both essential for simulating real-life decision processes. We compare the performance of LLMs with a cognitive instance-based learning (IBL) model, which imitates human experiential decision-making. Our findings indicate that LLMs excel at rapidly incorporating feedback to enhance prediction accuracy. In contrast, the cognitive IBL model better accounts for human exploratory behaviors and effectively captures loss aversion bias, i.e., the tendency to choose a sub-optimal goal with fewer step-cost penalties rather than exploring to find the optimal choice, even with limited experience. The results highlight the benefits of integrating LLMs with cognitive architectures, suggesting that this synergy could enhance the modeling and understanding of complex human decision-making patterns.

Heterogeneous collaborative computing with NPU and CPU has received widespread attention due to its substantial performance benefits. To ensure data confidentiality and integrity during computing, Trusted Execution Environments (TEE) is considered a promising solution because of its comparatively lower overhead. However, existing heterogeneous TEE designs are inefficient for collaborative computing due to fine and different memory granularities between CPU and NPU. 1) The cacheline granularity of CPU TEE intensifies memory pressure due to its extra memory access, and 2) the cacheline granularity MAC of NPU escalates the pressure on the limited memory storage. 3) Data transfer across heterogeneous enclaves relies on the transit of non-secure regions, resulting in cumbersome re-encryption and scheduling. To address these issues, we propose TensorTEE, a unified tensor-granularity heterogeneous TEE for efficient secure collaborative tensor computing. First, we virtually support tensor granularity in CPU TEE to eliminate the off-chip metadata access by detecting and maintaining tensor structures on-chip. Second, we propose tensor-granularity MAC management with predictive execution to avoid computational stalls while eliminating off-chip MAC storage and access. Moreover, based on the unified granularity, we enable direct data transfer without re-encryption and scheduling dilemmas. Our evaluation is built on enhanced Gem5 and a cycle-accurate NPU simulator. The results show that TensorTEE improves the performance of Large Language Model (LLM) training workloads by 4.0x compared to existing work and incurs only 2.1% overhead compared to non-secure training, offering a practical security assurance for LLM training.

Tensor processing units (TPUs) are one of the most well-known machine learning (ML) accelerators utilized at large scale in data centers as well as in tiny ML applications. TPUs offer several improvements and advantages over conventional ML accelerators, like graphical processing units (GPUs), being designed specifically to perform the multiply-accumulate (MAC) operations required in the matrix-matrix and matrix-vector multiplies extensively present throughout the execution of deep neural networks (DNNs). Such improvements include maximizing data reuse and minimizing data transfer by leveraging the temporal dataflow paradigms provided by the systolic array architecture. While this design provides a significant performance benefit, the current implementations are restricted to a single dataflow consisting of either input, output, or weight stationary architectures. This can limit the achievable performance of DNN inference and reduce the utilization of compute units. Therefore, the work herein consists of developing a reconfigurable dataflow TPU, called the Flex-TPU, which can dynamically change the dataflow per layer during run-time. Our experiments thoroughly test the viability of the Flex-TPU comparing it to conventional TPU designs across multiple well-known ML workloads. The results show that our Flex-TPU design achieves a significant performance increase of up to 2.75x compared to conventional TPU, with only minor area and power overheads.

How to efficiently serve Large Language Models (LLMs) has become a pressing issue because of their huge computational cost in their autoregressive generation process. To mitigate computational costs, LLMs often employ the KV Cache technique to improve the generation speed. While improving the computational efficiency, the storage requirements of the KV cache are substantial, particularly in long-context scenarios, leading to significant memory consumption. Existing KV cache eviction methods often degrade the performance of LLMs in long-context scenarios due to the information loss introduced by eviction. In this paper, we propose a novel KV cache merging approach, called KVMerger, to achieve adaptive KV cache compression for long-context tasks without significant performance degradation under constrained memory budgets. Our approach is inspired by the intriguing observation that key states exhibit high similarity at the token level within a single sequence. To facilitate merging, we develop an effective yet straightforward merging set identification algorithm to identify suitable KV states for merging. Our merging set identification algorithm stimulates the second observation that KV cache sparsity, from similarity perspective, is independent of the dataset and remains persistent at the model level. Subsequently, we propose a Gaussian kernel weighted merging algorithm to selectively merge all states within each merging set. We conduct extensive experiments to demonstrate the effectiveness of KVMerger for long-context tasks under constrained memory budgets, applying it to models including Llama2-7B-chat and Llama2-13B-chat. Using the LongBench and ZeroScroll benchmarks, we compare our method with other KV cache compression techniques, including H2O and CaM, showing that our method achieves superior performance across tasks with both 50% and 35% KV cache budgets.

Transformers excel in Natural Language Processing (NLP) due to their prowess in capturing long-term dependencies but suffer from exponential resource consumption with increasing sequence lengths. To address these challenges, we propose MCSD model, an efficient language model with linear scaling and fast inference speed. MCSD model leverages diverse feature fusion, primarily through the multi-channel slope and decay (MCSD) block, to robustly represent features. This block comprises slope and decay sections that extract features across diverse temporal receptive fields, facilitating capture of both local and global information. In addition, MCSD block conducts element-wise fusion of diverse features to further enhance the delicate feature extraction capability. For inference, we formulate the inference process into a recurrent representation, slashing space complexity to $O(1)$ and time complexity to $O(N)$ respectively. Our experiments show that MCSD attains higher throughput and lower GPU memory consumption compared to Transformers, while maintaining comparable performance to larger-scale language learning models on benchmark tests. These attributes position MCSD as a promising base for edge deployment and embodied intelligence.

Diffusion MRI (dMRI) is an important neuroimaging technique with high acquisition costs. Deep learning approaches have been used to enhance dMRI and predict diffusion biomarkers through undersampled dMRI. To generate more comprehensive raw dMRI, generative adversarial network based methods are proposed to include b-values and b-vectors as conditions, but they are limited by unstable training and less desirable diversity. The emerging diffusion model (DM) promises to improve generative performance. However, it remains challenging to include essential information in conditioning DM for more relevant generation, i.e., the physical principles of dMRI and white matter tract structures. In this study, we propose a physics-guided diffusion model to generate high-quality dMRI. Our model introduces the physical principles of dMRI in the noise evolution in the diffusion process and introduce a query-based conditional mapping within the difussion model. In addition, to enhance the anatomical fine detials of the generation, we introduce the XTRACT atlas as prior of white matter tracts by adopting an adapter technique. Our experiment results show that our method outperforms other state-of-the-art methods and has the potential to advance dMRI enhancement.

Large Language Models (LLMs) have demonstrated remarkable capabilities in solving various tasks, yet they often struggle with comprehensively addressing complex and vague problems. Existing approaches, including multi-agent LLM systems, offer solutions to certain challenges but still require manual setup and lack scalability. To address this gap, we propose a novel approach leveraging decomposition to enable LLMs to tackle vague problems effectively. Our approach involves an orchestrating LLM that interacts with users to understand the problem and then decomposes it into tangible sub-problems. Instead of expecting the LLM to solve the entire problem in one go, we train it to ask follow-up questions to gain a deeper understanding of the user's requirements. Once the problem is adequately understood, the orchestrating LLM divides it into smaller, manageable sub-problems. Each sub-problem is then assigned to specialized LLM agents or non-LLM functions for resolution. These agents work in parallel to solve their respective sub-problems, with the orchestrating LLM overseeing the process and compiling the solutions into a comprehensive answer for the user. By adopting this decomposition approach, we alleviate the constraints imposed by token limitations on LLM outputs and empower them to provide nuanced solutions to complex and ambiguous problems. Through our approach, we aim to enable LLMs to think and operate more like humans, breaking down complex problems into manageable parts and collaboratively solving them. This not only enhances the problem-solving capabilities of LLMs but also offers a scalable and efficient method for addressing a wide range of real-world challenges.

Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.

In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.

Generative Adversarial networks (GANs) have obtained remarkable success in many unsupervised learning tasks and unarguably, clustering is an important unsupervised learning problem. While one can potentially exploit the latent-space back-projection in GANs to cluster, we demonstrate that the cluster structure is not retained in the GAN latent space. In this paper, we propose ClusterGAN as a new mechanism for clustering using GANs. By sampling latent variables from a mixture of one-hot encoded variables and continuous latent variables, coupled with an inverse network (which projects the data to the latent space) trained jointly with a clustering specific loss, we are able to achieve clustering in the latent space. Our results show a remarkable phenomenon that GANs can preserve latent space interpolation across categories, even though the discriminator is never exposed to such vectors. We compare our results with various clustering baselines and demonstrate superior performance on both synthetic and real datasets.

北京阿比特科技有限公司