Mislabeled, duplicated, or biased data in real-world scenarios can lead to prolonged training and even hinder model convergence. Traditional solutions prioritizing easy or hard samples lack the flexibility to handle such a variety simultaneously. Recent work has proposed a more reasonable data selection principle by examining the data's impact on the model's generalization loss. However, its practical adoption relies on less principled approximations and additional holdout data. This work solves these problems by leveraging a lightweight Bayesian treatment and incorporating off-the-shelf zero-shot predictors built on large-scale pre-trained models. The resulting algorithm is efficient and easy to implement. We perform extensive empirical studies on challenging benchmarks with considerable data noise and imbalance in the online batch selection scenario, and observe superior training efficiency over competitive baselines. Notably, on the challenging WebVision benchmark, our method can achieve similar predictive performance with significantly fewer training iterations than leading data selection methods.
This work pioneers evaluating emergent planning capabilities based on situational awareness in large language models. We contribute (i) novel benchmarks and metrics for standardized assessment; (ii) a unique dataset to spur progress; and (iii) demonstrations that prompting and multi-agent schemes significantly enhance planning performance in context-sensitive planning tasks. Positioning this within a situated agent and automated planning research, we highlight inherent reliability challenges--efficiently mapping world states to actions without environmental guidance remains open despite simulated domain advances. Although out-of-scope, limitations around validation methodology and data availability indicate exciting directions, including fine-tuning on expanded planning corpora and optimizations for triggering fast latent planning. By conclusively demonstrating current methods' promise and limitations via rigorous comparison, we catalyze investigating reliable goal-directed reasoning for situated agents.
Fine-tuning large language models (LLMs) with domain-specific instructions has emerged as an effective method to enhance their domain-specific understanding. Yet, there is limited work that examines the core characteristics acquired during this process. In this study, we benchmark the fundamental characteristics learned by contact-center (CC) specific instruction fine-tuned LLMs with out-of-the-box (OOB) LLMs via probing tasks encompassing conversational, channel, and automatic speech recognition (ASR) properties. We explore different LLM architectures (Flan-T5 and Llama), sizes (3B, 7B, 11B, 13B), and fine-tuning paradigms (full fine-tuning vs PEFT). Our findings reveal remarkable effectiveness of CC-LLMs on the in-domain downstream tasks, with improvement in response acceptability by over 48% compared to OOB-LLMs. Additionally, we compare the performance of OOB-LLMs and CC-LLMs on the widely used SentEval dataset, and assess their capabilities in terms of surface, syntactic, and semantic information through probing tasks. Intriguingly, we note a relatively consistent performance of probing classifiers on the set of probing tasks. Our observations indicate that CC-LLMs, while outperforming their out-of-the-box counterparts, exhibit a tendency to rely less on encoding surface, syntactic, and semantic properties, highlighting the intricate interplay between domain-specific adaptation and probing task performance opening up opportunities to explore behavior of fine-tuned language models in specialized contexts.
Current parametric models have made notable progress in 3D hand pose and shape estimation. However, due to the fixed hand topology and complex hand poses, current models are hard to generate meshes that are aligned with the image well. To tackle this issue, we introduce a dual noise estimation method in this paper. Given a single-view image as input, we first adopt a baseline parametric regressor to obtain the coarse hand meshes. We assume the mesh vertices and their image-plane projections are noisy, and can be associated in a unified probabilistic model. We then learn the distributions of noise to refine mesh vertices and their projections. The refined vertices are further utilized to refine camera parameters in a closed-form manner. Consequently, our method obtains well-aligned and high-quality 3D hand meshes. Extensive experiments on the large-scale Interhand2.6M dataset demonstrate that the proposed method not only improves the performance of its baseline by more than 10$\%$ but also achieves state-of-the-art performance. Project page: \url{//github.com/hanhuili/DNE4Hand}.
A typical assumption in state-of-the-art self-localization models is that an annotated training dataset is available for the target workspace. However, this is not necessarily true when a robot travels around the general open world. This work introduces a novel training scheme for open-world distributed robot systems. In our scheme, a robot (``student") can ask the other robots it meets at unfamiliar places (``teachers") for guidance. Specifically, a pseudo-training dataset is reconstructed from the teacher model and then used for continual learning of the student model under domain, class, and vocabulary incremental setup. Unlike typical knowledge transfer schemes, our scheme introduces only minimal assumptions on the teacher model, so that it can handle various types of open-set teachers, including those uncooperative, untrainable (e.g., image retrieval engines), or black-box teachers (i.e., data privacy). In this paper, we investigate a ranking function as an instance of such generic models, using a challenging data-free recursive distillation scenario, where a student once trained can recursively join the next-generation open teacher set.
With the significant successes of large language models (LLMs) in many natural language processing tasks, there is growing interest among researchers in exploring LLMs for novel recommender systems. However, we have observed that directly using LLMs as a recommender system is usually unstable due to its inherent position bias. To this end, we introduce exploratory research and find consistent patterns of positional bias in LLMs that influence the performance of recommendation across a range of scenarios. Then, we propose a Bayesian probabilistic framework, STELLA (Stable LLM for Recommendation), which involves a two-stage pipeline. During the first probing stage, we identify patterns in a transition matrix using a probing detection dataset. And in the second recommendation stage, a Bayesian strategy is employed to adjust the biased output of LLMs with an entropy indicator. Therefore, our framework can capitalize on existing pattern information to calibrate instability of LLMs, and enhance recommendation performance. Finally, extensive experiments clearly validate the effectiveness of our framework.
Although deep learning are commonly employed for image recognition, usually huge amount of labeled training data is required, which may not always be readily available. This leads to a noticeable performance disparity when compared to state-of-the-art unsupervised face verification techniques. In this work, we propose a method to narrow this gap by leveraging an autoencoder to convert the face image vector into a novel representation. Notably, the autoencoder is trained to reconstruct neighboring face image vectors rather than the original input image vectors. These neighbor face image vectors are chosen through an unsupervised process based on the highest cosine scores with the training face image vectors. The proposed method achieves a relative improvement of 56\% in terms of EER over the baseline system on Labeled Faces in the Wild (LFW) dataset. This has successfully narrowed down the performance gap between cosine and PLDA scoring systems.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.