亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Robots that work close to humans need to understand and use social cues to act in a socially acceptable manner. Social cues are a form of communication (i.e., information flow) between people. In this paper, a framework is introduced to detect and analyse a class of perceptible social cues that are nonverbal and episodic, and the related information transfer using an information-theoretic measure, namely, transfer entropy. We use a group-joining setting to demonstrate the practicality of transfer entropy for analysing communications between humans. Then we demonstrate the framework in two settings involving social interactions between humans: object-handover and person-following. Our results show that transfer entropy can identify information flows between agents and when and where they occur. Potential applications of the framework include information flow or social cue analysis for interactive robot design and socially-aware robot planning.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 相似度 · MoDELS · AUC · Better ·
2024 年 2 月 2 日

Large language models (LLMs) have achieved huge success in numerous natural language process (NLP) tasks. However, it faces the challenge of significant resource consumption during inference. In this paper, we aim to improve the inference efficiency of LLMs by prompt caching, i.e., if the current prompt can be answered by the same response of a previous prompt, one can directly utilize that previous response without calling the LLM. Specifically, we focus on the prediction accuracy of prompt caching for single-round question-answering tasks via embedding similarity. The existing embeddings of prompts mostly focus on whether two prompts are semantically similar, which is not necessarily equivalent to whether the same response can answer them. Therefore, we propose a distillation-based method to fine-tune the existing embeddings for better caching prediction. Theoretically, we provide finite-sample guarantees for the convergence of our method under different types of loss functions. Empirically, we carefully construct a hard dataset based on Kwiatkowski et al. (2019) where the existing embedding model (Wang et al., 2022) only achieves an AUC of 0.51. We then fine-tune the above embedding model, which significantly improves the AUC of caching prediction from 0.51 to 0.81. We also conduct simulations demonstrating that our trained models achieve better caching efficiency than the previous embedding model.

In response to everyday queries, humans explicitly signal uncertainty and offer alternative answers when they are unsure. Machine learning models that output calibrated prediction sets through conformal prediction mimic this human behaviour; larger sets signal greater uncertainty while providing alternatives. In this work, we study the usefulness of conformal prediction sets as an aid for human decision making by conducting a pre-registered randomized controlled trial with conformal prediction sets provided to human subjects. With statistical significance, we find that when humans are given conformal prediction sets their accuracy on tasks improves compared to fixed-size prediction sets with the same coverage guarantee. The results show that quantifying model uncertainty with conformal prediction is helpful for human-in-the-loop decision making and human-AI teams.

In the last decade, social planners have used crowdfunding to raise funds for public projects. As these public projects are non-excludable, the beneficiaries may free-ride. Thus, there is a need to design incentive mechanisms for such strategic agents to contribute to the project. The existing mechanisms, like PPR or PPRx, assume that the agent's beliefs about the project getting funded do not change over time, i.e., their beliefs are static. Researchers highlight that unless appropriately incentivized, the agents defer their contributions in static settings, leading to a ``race'' to contribute at the deadline. In this work, we model the evolution of agents' beliefs as a random walk. We study PPRx -- an existing mechanism for the static belief setting -- in this dynamic belief setting and refer to it as PPRx-DB for readability. We prove that in PPRx-DB, the project is funded at equilibrium. More significantly, we prove that under certain conditions on agent's belief evolution, agents will contribute as soon as they arrive at the mechanism. Thus, we believe that by incorporating dynamic belief evolution in analysis, the social planner can mitigate the concern of race conditions in many mechanisms.

The stochastic actor oriented model (SAOM) is a method for modelling social interactions and social behaviour over time. It can be used to model drivers of dynamic interactions using both exogenous covariates and endogenous network configurations, but also the co-evolution of behaviour and social interactions. In its standard implementations, it assumes that all individual have the same interaction evaluation function. This lack of heterogeneity is one of its limitations. The aim of this paper is to extend the inference framework for the SAOM to include random effects, so that the heterogeneity of individuals can be modeled more accurately. We decompose the linear evaluation function that models the probability of forming or removing a tie from the network, in a homogeneous fixed part and a random, individual-specific part. We extend the Robbins-Monro algorithm to the estimation of the variance of the random parameters. Our method is applicable for the general random effect formulations. We illustrate the method with a random out-degree model and show the parameter estimation of the random components, significance tests and model evaluation. We apply the method to the Kapferer's Tailor shop study. It is shown that a random out-degree constitutes a serious alternative to including transitivity and higher-order dependency effects.

Probability predictions are essential to inform decision making across many fields. Ideally, probability predictions are (i) well calibrated, (ii) accurate, and (iii) bold, i.e., spread out enough to be informative for decision making. However, there is a fundamental tension between calibration and boldness, since calibration metrics can be high when predictions are overly cautious, i.e., non-bold. The purpose of this work is to develop a Bayesian model selection-based approach to assess calibration, and a strategy for boldness-recalibration that enables practitioners to responsibly embolden predictions subject to their required level of calibration. Specifically, we allow the user to pre-specify their desired posterior probability of calibration, then maximally embolden predictions subject to this constraint. We demonstrate the method with a case study on hockey home team win probabilities and then verify the performance of our procedures via simulation. We find that very slight relaxation of calibration probability (e.g., from 0.99 to 0.95) can often substantially embolden predictions when they are well calibrated and accurate (e.g., widening hockey predictions range from .26-.78 to .10-.91).

Camera localization methods based on retrieval, local feature matching, and 3D structure-based pose estimation are accurate but require high storage, are slow, and are not privacy-preserving. A method based on scene landmark detection (SLD) was recently proposed to address these limitations. It involves training a convolutional neural network (CNN) to detect a few predetermined, salient, scene-specific 3D points or landmarks and computing camera pose from the associated 2D-3D correspondences. Although SLD outperformed existing learning-based approaches, it was notably less accurate than 3D structure-based methods. In this paper, we show that the accuracy gap was due to insufficient model capacity and noisy labels during training. To mitigate the capacity issue, we propose to split the landmarks into subgroups and train a separate network for each subgroup. To generate better training labels, we propose using dense reconstructions to estimate visibility of scene landmarks. Finally, we present a compact architecture to improve memory efficiency. Accuracy wise, our approach is on par with state of the art structure based methods on the INDOOR-6 dataset but runs significantly faster and uses less storage. Code and models can be found at //github.com/microsoft/SceneLandmarkLocalization.

This study explores modeling and control for quadrotor acrobatics, focusing on executing flip maneuvers. Flips are an elegant way to deliver sensor probes into no-fly or hazardous zones, like volcanic vents. Successful flips require feasible trajectories and precise control, influenced by rotor dynamics, thrust allocation, and control methodologies. The research introduces a novel approach using Model Predictive Control (MPC) for real-time trajectory planning. The MPC considers dynamic constraints and environmental variables, ensuring system stability during maneuvers. The proposed methodology's effectiveness is examined through simulation studies in ROS and Gazebo, providing insights into quadrotor behavior, response time, and trajectory accuracy. Real-time flight experiments on a custom agile quadrotor using PixHawk 4 and Hardkernel Odroid validate MPC-designed controllers. Experiments confirm successful execution and adaptability to real-world scenarios. Outcomes contribute to autonomous aerial robotics, especially aerial acrobatics, enhancing mission capabilities. MPC controllers find applications in probe throws and optimal image capture views through efficient flight paths, e.g., full roll maneuvers. This research paves the way for quadrotors in demanding scenarios, showcasing groundbreaking applications. Video Link: \url{ //www.youtube.com/watch?v=UzR0PWjy9W4}

Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short for SeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.

Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.

Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.

北京阿比特科技有限公司