亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper examines how large language models (LLMs) can help people write constructive comments in online debates on divisive social issues and whether the notions of constructiveness vary across cultures. Through controlled experiments with 600 participants from India and the US, who reviewed and wrote constructive comments on online threads on Islamophobia and homophobia, we found potential misalignment in how LLMs and humans perceive constructiveness in online comments. While the LLM was more likely to view dialectical comments as more constructive, participants favored comments that emphasized logic and facts more than the LLM did. Despite these differences, participants rated LLM-generated and human-AI co-written comments as significantly more constructive than those written independently by humans. Our analysis also revealed that LLM-generated and human-AI co-written comments exhibited more linguistic features associated with constructiveness compared to human-written comments on divisive topics. When participants used LLMs to refine their comments, the resulting comments were longer, more polite, positive, less toxic, and more readable, with added argumentative features that retained the original intent but occasionally lost nuances. Based on these findings, we discuss ethical and design considerations in using LLMs to facilitate constructive discourse online.

相關內容

Personalized text-to-image generation methods can generate customized images based on the reference images, which have garnered wide research interest. Recent methods propose a finetuning-free approach with a decoupled cross-attention mechanism to generate personalized images requiring no test-time finetuning. However, when multiple reference images are provided, the current decoupled cross-attention mechanism encounters the object confusion problem and fails to map each reference image to its corresponding object, thereby seriously limiting its scope of application. To address the object confusion problem, in this work we investigate the relevance of different positions of the latent image features to the target object in diffusion model, and accordingly propose a weighted-merge method to merge multiple reference image features into the corresponding objects. Next, we integrate this weighted-merge method into existing pre-trained models and continue to train the model on a multi-object dataset constructed from the open-sourced SA-1B dataset. To mitigate object confusion and reduce training costs, we propose an object quality score to estimate the image quality for the selection of high-quality training samples. Furthermore, our weighted-merge training framework can be employed on single-object generation when a single object has multiple reference images. The experiments verify that our method achieves superior performance to the state-of-the-arts on the Concept101 dataset and DreamBooth dataset of multi-object personalized image generation, and remarkably improves the performance on single-object personalized image generation. Our code is available at //github.com/hqhQAQ/MIP-Adapter.

This paper studies a hybrid language model (HLM) architecture that integrates a small language model (SLM) operating on a mobile device with a large language model (LLM) hosted at the base station (BS) of a wireless network. The HLM token generation process follows the speculative inference principle: the SLM's vocabulary distribution is uploaded to the LLM, which either accepts or rejects it, with rejected tokens being resampled by the LLM. While this approach ensures alignment between the vocabulary distributions of the SLM and LLM, it suffers from low token throughput due to uplink transmission and the computation costs of running both language models. To address this, we propose a novel HLM structure coined Uncertainty-aware opportunistic HLM (U-HLM), wherein the SLM locally measures its output uncertainty and skips both uplink transmissions and LLM operations for tokens that are likely to be accepted. This opportunistic skipping is enabled by our empirical finding of a linear correlation between the SLM's uncertainty and the LLM's rejection probability. We analytically derive the uncertainty threshold and evaluate its expected risk of rejection. Simulations show that U-HLM reduces uplink transmissions and LLM computations by 45.93%, while achieving up to 97.54% of the LLM's inference accuracy and 2.54$\times$ faster token throughput than HLM without skipping.

With the growth of social media and large language models, content moderation has become crucial. Many existing datasets lack adequate representation of different groups, resulting in unreliable assessments. To tackle this, we propose a socio-culturally aware evaluation framework for LLM-driven content moderation and introduce a scalable method for creating diverse datasets using persona-based generation. Our analysis reveals that these datasets provide broader perspectives and pose greater challenges for LLMs than diversity-focused generation methods without personas. This challenge is especially pronounced in smaller LLMs, emphasizing the difficulties they encounter in moderating such diverse content.

Tokenization methods like Byte-Pair Encoding (BPE) enhance computational efficiency in large language models (LLMs) but often obscure internal character structures within tokens. This limitation hinders LLMs' ability to predict precise character positions, which is crucial in tasks like Chinese Spelling Correction (CSC) where identifying the positions of misspelled characters accelerates correction processes. We propose Token Internal Position Awareness (TIPA), a method that significantly improves models' ability to capture character positions within tokens by training them on reverse character prediction tasks using the tokenizer's vocabulary. Experiments demonstrate that TIPA enhances position prediction accuracy in LLMs, enabling more precise identification of target characters in original text. Furthermore, when applied to downstream tasks that do not require exact position prediction, TIPA still boosts performance in tasks needing character-level information, validating its versatility and effectiveness.

Retrieval-augmented generation (RAG) improves large language models (LMs) by incorporating non-parametric knowledge through evidence retrieved from external sources. However, it often struggles to cope with inconsistent and irrelevant information that can distract the LM from its tasks, especially when multiple evidence pieces are required. While compressing the retrieved evidence with a compression model aims to address this issue, the compressed evidence may still be unfamiliar to the target model used for downstream tasks, potentially failing to utilize the evidence effectively. We propose FaviComp (Familarity-Aware Evidence Compression), a novel training-free evidence compression technique that makes retrieved evidence more familiar to the target model, while seamlessly integrating parametric knowledge from the model. Experimental results show that FaviComp consistently outperforms most recent evidence compression baselines across multiple open-domain QA datasets, improving accuracy by up to 28.1% while achieving high compression rates. Additionally, we demonstrate the effective integration of both parametric and non-parametric knowledge during evidence compression.

Large language models (LLMs) excel on new tasks without additional training, simply by providing natural language prompts that demonstrate how the task should be performed. Prompt ensemble methods comprehensively harness the knowledge of LLMs while mitigating individual biases and errors and further enhancing performance. However, more prompts do not necessarily lead to better results, and not all prompts are beneficial. A small number of high-quality prompts often outperform many low-quality prompts. Currently, there is a lack of a suitable method for evaluating the impact of prompts on the results. In this paper, we utilize the Shapley value to fairly quantify the contributions of prompts, helping to identify beneficial or detrimental prompts, and potentially guiding prompt valuation in data markets. Through extensive experiments employing various ensemble methods and utility functions on diverse tasks, we validate the effectiveness of using the Shapley value method for prompts as it effectively distinguishes and quantifies the contributions of each prompt.

This paper presents a novel approach to enhance communication efficiency in federated learning through clipped uniform quantization. By leveraging optimal clipping thresholds and client-specific adaptive quantization schemes, the proposed method significantly reduces bandwidth and memory requirements for model weight transmission between clients and the server while maintaining competitive accuracy. We investigate the effects of symmetric clipping and uniform quantization on model performance, emphasizing the role of stochastic quantization in mitigating artifacts and improving robustness. Extensive simulations demonstrate that the method achieves near-full-precision performance with substantial communication savings. Moreover, the proposed approach facilitates efficient weight averaging based on the inverse of the mean squared quantization errors, effectively balancing the trade-off between communication efficiency and model accuracy. Moreover, in contrast to federated averaging, this design obviates the need to disclose client-specific data volumes to the server, thereby enhancing client privacy. Comparative analysis with conventional quantization methods further confirms the efficacy of the proposed scheme.

This paper presents a consensus-based payload algorithm (CBPA) to deal with the condition of robots' capability decrease for multi-robot task allocation. During the execution of complex tasks, robots' capabilities could decrease with the consumption of payloads, which causes a problem that the robot coalition would not meet the tasks' requirements in real time. The proposed CBPA is an enhanced version of the consensus-based bundle algorithm (CBBA) and comprises two primary core phases: the payload bundle construction and consensus phases. In the payload bundle construction phase, CBPA introduces a payload assignment matrix to track the payloads carried by the robots and the demands of multi-robot tasks in real time. Then, robots share their respective payload assignment matrix in the consensus phase. These two phases are iterated to dynamically adjust the number of robots performing multi-robot tasks and the number of tasks each robot performs and obtain conflict-free results to ensure that the robot coalition meets the demand and completes all tasks as quickly as possible. Physical experiment shows that CBPA is appropriate in complex and dynamic scenarios where robots need to collaborate and task requirements are tightly coupled to the robots' payloads. Numerical experiments show that CBPA has higher total task gains than CBBA.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

北京阿比特科技有限公司