亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: //github.com/MLGroupJLU/LLM-eval-survey.

相關內容

The rapid advancement of large language models, such as the Generative Pre-trained Transformer (GPT) series, has had significant implications across various disciplines. In this study, we investigate the potential of the state-of-the-art large language model (GPT-4) for planning tasks. We explore its effectiveness in multiple planning subfields, highlighting both its strengths and limitations. Through a comprehensive examination, we identify areas where large language models excel in solving planning problems and reveal the constraints that limit their applicability. Our empirical analysis focuses on GPT-4's performance in planning domain extraction, graph search path planning, and adversarial planning. We then propose a way of fine-tuning a domain-specific large language model to improve its Chain of Thought (CoT) capabilities for the above-mentioned tasks. The results provide valuable insights into the potential applications of large language models in the planning domain and pave the way for future research to overcome their limitations and expand their capabilities.

With their recent development, large language models (LLMs) have been found to exhibit a certain level of Theory of Mind (ToM), a complex cognitive capacity that is related to our conscious mind and that allows us to infer another's beliefs and perspective. While human ToM capabilities are believed to derive from the neural activity of a broadly interconnected brain network, including that of dorsal medial prefrontal cortex (dmPFC) neurons, the precise processes underlying LLM's capacity for ToM or their similarities with that of humans remains largely unknown. In this study, we drew inspiration from the dmPFC neurons subserving human ToM and employed a similar methodology to examine whether LLMs exhibit comparable characteristics. Surprisingly, our analysis revealed a striking resemblance between the two, as hidden embeddings (artificial neurons) within LLMs started to exhibit significant responsiveness to either true- or false-belief trials, suggesting their ability to represent another's perspective. These artificial embedding responses were closely correlated with the LLMs' performance during the ToM tasks, a property that was dependent on the size of the models. Further, the other's beliefs could be accurately decoded using the entire embeddings, indicating the presence of the embeddings' ToM capability at the population level. Together, our findings revealed an emergent property of LLMs' embeddings that modified their activities in response to ToM features, offering initial evidence of a parallel between the artificial model and neurons in the human brain.

Mathematical notation makes up a large portion of STEM literature, yet finding semantic representations for formulae remains a challenging problem. Because mathematical notation is precise, and its meaning changes significantly with small character shifts, the methods that work for natural text do not necessarily work well for mathematical expressions. This work describes an approach for representing mathematical expressions in a continuous vector space. We use the encoder of a sequence-to-sequence architecture, trained on visually different but mathematically equivalent expressions, to generate vector representations (or embeddings). We compare this approach with a structural approach that considers visual layout to embed an expression and show that our proposed approach is better at capturing mathematical semantics. Finally, to expedite future research, we publish a corpus of equivalent transcendental and algebraic expression pairs.

The way we analyse clinical texts has undergone major changes over the last years. The introduction of language models such as BERT led to adaptations for the (bio)medical domain like PubMedBERT and ClinicalBERT. These models rely on large databases of archived medical documents. While performing well in terms of accuracy, both the lack of interpretability and limitations to transfer across languages limit their use in clinical setting. We introduce a novel light-weight graph-based embedding method specifically catering radiology reports. It takes into account the structure and composition of the report, while also connecting medical terms in the report through the multi-lingual SNOMED Clinical Terms knowledge base. The resulting graph embedding uncovers the underlying relationships among clinical terms, achieving a representation that is better understandable for clinicians and clinically more accurate, without reliance on large pre-training datasets. We show the use of this embedding on two tasks namely disease classification of X-ray reports and image classification. For disease classification our model is competitive with its BERT-based counterparts, while being magnitudes smaller in size and training data requirements. For image classification, we show the effectiveness of the graph embedding leveraging cross-modal knowledge transfer and show how this method is usable across different languages.

Topic modeling and text mining are subsets of Natural Language Processing with relevance for conducting meta-analysis (MA) and systematic review (SR). For evidence synthesis, the above NLP methods are conventionally used for topic-specific literature searches or extracting values from reports to automate essential phases of SR and MA. Instead, this work proposes a comparative topic modeling approach to analyze reports of contradictory results on the same general research question. Specifically, the objective is to find topics exhibiting distinct associations with significant results for an outcome of interest by ranking them according to their proportional occurrence and consistency of distribution across reports of significant results. The proposed method was tested on broad-scope studies addressing whether supplemental nutritional compounds significantly benefit macular degeneration (MD). Eight compounds were identified as having a particular association with reports of significant results for benefitting MD. Six of these were further supported in terms of effectiveness upon conducting a follow-up literature search for validation (omega-3 fatty acids, copper, zeaxanthin, lutein, zinc, and nitrates). The two not supported by the follow-up literature search (niacin and molybdenum) also had the lowest scores under the proposed methods ranking system, suggesting that the proposed method's score for a given topic is a viable proxy for its degree of association with the outcome of interest. These results underpin the proposed methods potential to add specificity in understanding effects from broad-scope reports, elucidate topics of interest for future research, and guide evidence synthesis in a systematic and scalable way.

Ever since the emergence of large language models (LLMs) and related applications, such as ChatGPT, its performance and error analysis for programming tasks have been subject to research. In this work-in-progress paper, we explore the potential of such LLMs for computing educators and learners, as we analyze the feedback it generates to a given input containing program code. In particular, we aim at (1) exploring how an LLM like ChatGPT responds to students seeking help with their introductory programming tasks, and (2) identifying feedback types in its responses. To achieve these goals, we used students' programming sequences from a dataset gathered within a CS1 course as input for ChatGPT along with questions required to elicit feedback and correct solutions. The results show that ChatGPT performs reasonably well for some of the introductory programming tasks and student errors, which means that students can potentially benefit. However, educators should provide guidance on how to use the provided feedback, as it can contain misleading information for novices.

Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.

北京阿比特科技有限公司