亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The problem of computing an exact experimental design that is optimal for the least-squares estimation of the parameters of a regression model is considered. We show that this problem can be solved via mixed-integer linear programming (MILP) for a wide class of optimality criteria, including the criteria of A-, I-, G- and MV-optimality. This approach improves upon the current state-of-the-art mathematical programming formulation, which uses mixed-integer second-order cone programming. The key idea underlying the MILP formulation is McCormick relaxation, which critically depends on finite interval bounds for the elements of the covariance matrix of the least-squares estimator corresponding to an optimal exact design. We provide both analytic and algorithmic methods for constructing these bounds. We also demonstrate the unique advantages of the MILP approach, such as the possibility of incorporating multiple design constraints into the optimization problem, including constraints on the variances and covariances of the least-squares estimator.

相關內容

Receiver operating characteristic (ROC) analysis is a tool to evaluate the capacity of a numeric measure to distinguish between groups, often employed in the evaluation of diagnostic tests. Overall classification ability is sometimes crudely summarized by a single numeric measure such as the area under the empirical ROC curve. However, it may also be of interest to estimate the full ROC curve while leveraging assumptions regarding the nature of the data (parametric) or about the ROC curve directly (semiparametric). Although there has been recent interest in methods to conduct comparisons by way of stochastic ordering, nuances surrounding ROC geometry and estimation are not widely known in the broader scientific and statistical community. The overarching goals of this manuscript are to (1) provide an overview of existing frameworks for ROC curve estimation with examples, (2) offer intuition for and considerations regarding methodological trade-offs, and (3) supply sample R code to guide implementation. We utilize simulations to demonstrate the bias-variance trade-off across various methods. As an illustrative example, we analyze data from a recent cohort study in order to compare responses to SARS-CoV-2 vaccination between solid organ transplant recipients and healthy controls.

Statistical depth functions provide measures of the outlyingness, or centrality, of the elements of a space with respect to a distribution. It is a nonparametric concept applicable to spaces of any dimension, for instance, multivariate and functional. Liu and Singh (1993) presented a multivariate two-sample test based on depth-ranks. We dedicate this paper to improving the power of the associated test statistic and incorporating its applicability to functional data. In doing so, we obtain a more natural test statistic that is symmetric in both samples. We derive the null asymptotic of the proposed test statistic, also proving the validity of the testing procedure for functional data. Finally, the finite sample performance of the test for functional data is illustrated by means of a simulation study and a real data analysis on annual temperature curves of ocean drifters is executed.

Machine learning techniques have recently been of great interest for solving differential equations. Training these models is classically a data-fitting task, but knowledge of the expression of the differential equation can be used to supplement the training objective, leading to the development of physics-informed scientific machine learning. In this article, we focus on one class of models called nonlinear vector autoregression (NVAR) to solve ordinary differential equations (ODEs). Motivated by connections to numerical integration and physics-informed neural networks, we explicitly derive the physics-informed NVAR (piNVAR) which enforces the right-hand side of the underlying differential equation regardless of NVAR construction. Because NVAR and piNVAR completely share their learned parameters, we propose an augmented procedure to jointly train the two models. Then, using both data-driven and ODE-driven metrics, we evaluate the ability of the piNVAR model to predict solutions to various ODE systems, such as the undamped spring, a Lotka-Volterra predator-prey nonlinear model, and the chaotic Lorenz system.

We consider the following problem in computational geometry: given, in the d-dimensional real space, a set of points marked as positive and a set of points marked as negative, such that the convex hull of the positive set does not intersect the negative set, find K hyperplanes that separate, if possible, all the positive points from the negative ones. That is, we search for a convex polyhedron with at most K faces, containing all the positive points and no negative point. The problem is known in the literature for pure convex polyhedral approximation; our interest stems from its possible applications in constraint learning, where points are feasible or infeasible solutions of a Mixed Integer Program, and the K hyperplanes are linear constraints to be found. We cast the problem as an optimization one, minimizing the number of negative points inside the convex polyhedron, whenever exact separation cannot be achieved. We introduce models inspired by support vector machines and we design two mathematical programming formulations with binary variables. We exploit Dantzig-Wolfe decomposition to obtain extended formulations, and we devise column generation algorithms with ad-hoc pricing routines. We compare computing time and separation error values obtained by all our approaches on synthetic datasets, with number of points from hundreds up to a few thousands, showing our approaches to perform better than existing ones from the literature. Furthermore, we observe that key computational differences arise, depending on whether the budget K is sufficient to completely separate the positive points from the negative ones or not. On 8-dimensional instances (and over), existing convex hull algorithms become computational inapplicable, while our algorithms allow to identify good convex hull approximations in minutes of computation.

Areas of computational mechanics such as uncertainty quantification and optimization usually involve repeated evaluation of numerical models that represent the behavior of engineering systems. In the case of complex nonlinear systems however, these models tend to be expensive to evaluate, making surrogate models quite valuable. Artificial neural networks approximate systems very well by taking advantage of the inherent information of its given training data. In this context, this paper investigates the improvement of the training process by including sensitivity information, which are partial derivatives w.r.t. inputs, as outlined by Sobolev training. In computational mechanics, sensitivities can be applied to neural networks by expanding the training loss function with additional loss terms, thereby improving training convergence resulting in lower generalisation error. This improvement is shown in two examples of linear and non-linear material behavior. More specifically, the Sobolev designed loss function is expanded with residual weights adjusting the effect of each loss on the training step. Residual weighting is the given scaling to the different training data, which in this case are response and sensitivities. These residual weights are optimized by an adaptive scheme, whereby varying objective functions are explored, with some showing improvements in accuracy and precision of the general training convergence.

Sharpness is an almost generic assumption in continuous optimization that bounds the distance from minima by objective function suboptimality. It facilitates the acceleration of first-order methods through restarts. However, sharpness involves problem-specific constants that are typically unknown, and restart schemes typically reduce convergence rates. Moreover, these schemes are challenging to apply in the presence of noise or with approximate model classes (e.g., in compressive imaging or learning problems), and they generally assume that the first-order method used produces feasible iterates. We consider the assumption of approximate sharpness, a generalization of sharpness that incorporates an unknown constant perturbation to the objective function error. This constant offers greater robustness (e.g., with respect to noise or relaxation of model classes) for finding approximate minimizers. By employing a new type of search over the unknown constants, we design a restart scheme that applies to general first-order methods and does not require the first-order method to produce feasible iterates. Our scheme maintains the same convergence rate as when the constants are known. The convergence rates we achieve for various first-order methods match the optimal rates or improve on previously established rates for a wide range of problems. We showcase our restart scheme in several examples and highlight potential future applications and developments of our framework and theory.

We propose and study a one-dimensional model which consists of two cross-diffusion systems coupled via a moving interface. The motivation stems from the modelling of complex diffusion processes in the context of the vapor deposition of thin films. In our model, cross-diffusion of the various chemical species can be respectively modelled by a size-exclusion system for the solid phase and the Stefan-Maxwell system for the gaseous phase. The coupling between the two phases is modelled by linear phase transition laws of Butler-Volmer type, resulting in an interface evolution. The continuous properties of the model are investigated, in particular its entropy variational structure and stationary states. We introduce a two-point flux approximation finite volume scheme. The moving interface is addressed with a moving-mesh approach, where the mesh is locally deformed around the interface. The resulting discrete nonlinear system is shown to admit a solution that preserves the main properties of the continuous system, namely: mass conservation, nonnegativity, volume-filling constraints, decay of the free energy and asymptotics. In particular, the moving-mesh approach is compatible with the entropy structure of the continuous model. Numerical results illustrate these properties and the dynamics of the model.

Spectral analysis of open surfaces is gaining momentum for studying surface morphology in engineering, computer graphics, and medical domains. This analysis is enabled using proper parameterization approaches on the target analysis domain. In this paper, we propose the usage of customizable parameterization coordinates that allow mapping open surfaces into oblate or prolate hemispheroidal surfaces. For this, we proposed the usage of Tutte, conformal, area-preserving, and balanced mappings for parameterizing any given simply connected open surface onto an optimal hemispheroid. The hemispheroidal harmonic bases were introduced to spectrally expand these parametric surfaces by generalizing the known hemispherical ones. This approach uses the radius of the hemispheroid as a degree of freedom to control the size of the parameterization domain of the open surfaces while providing numerically stable basis functions. Several open surfaces have been tested using different mapping combinations. We also propose optimization-based mappings to serve various applications on the reconstruction problem. Altogether, our work provides an effective way to represent and analyze simply connected open surfaces.

Scientific computing has been an indispensable tool in applied sciences and engineering, where traditional numerical methods are often employed due to their superior accuracy guarantees. However, these methods often encounter challenges when dealing with problems involving complex geometries. Machine learning-based methods, on the other hand, are mesh-free, thus providing a promising alternative. In particular, operator learning methods have been proposed to learn the mapping from the input space to the solution space, enabling rapid inference of solutions to partial differential equations (PDEs) once trained. In this work, we address the parametric elliptic interface problem. Building upon the deep operator network (DeepONet), we propose an extended interface deep operator network (XI-DeepONet). XI-DeepONet exhibits three unique features: (1) The interface geometry is incorporated into the neural network as an additional input, enabling the network to infer solutions for new interface geometries once trained; (2) The level set function associated with the interface geometry is treated as the input, on which the solution mapping is continuous and can be effectively approximated by the deep operator network; (3) The network can be trained without any input-output data pairs, thus completely avoiding the need for meshes of any kind, directly or indirectly. We conduct a comprehensive series of numerical experiments to demonstrate the accuracy and robustness of the proposed method.

For the binary regression, the use of symmetrical link functions are not appropriate when we have evidence that the probability of success increases at a different rate than decreases. In these cases, the use of link functions based on the cumulative distribution function of a skewed and heavy tailed distribution can be useful. The most popular choice is some scale mixtures of skew-normal distribution. This family of distributions can have some identifiability problems, caused by the so-called direct parameterization. Also, in the binary modeling with skewed link functions, we can have another identifiability problem caused by the presence of the intercept and the skewness parameter. To circumvent these issues, in this work we proposed link functions based on the scale mixtures of skew-normal distributions under the centered parameterization. Furthermore, we proposed to fix the sign of the skewness parameter, which is a new perspective in the literature to deal with the identifiability problem in skewed link functions. Bayesian inference using MCMC algorithms and residual analysis are developed. Simulation studies are performed to evaluate the performance of the model. Also, the methodology is applied in a heart disease data.

北京阿比特科技有限公司