亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Critical learning periods are periods early in development where temporary sensory deficits can have a permanent effect on behavior and learned representations. Despite the radical differences between biological and artificial networks, critical learning periods have been empirically observed in both systems. This suggests that critical periods may be fundamental to learning and not an accident of biology. Yet, why exactly critical periods emerge in deep networks is still an open question, and in particular it is unclear whether the critical periods observed in both systems depend on particular architectural or optimization details. To isolate the key underlying factors, we focus on deep linear network models, and show that, surprisingly, such networks also display much of the behavior seen in biology and artificial networks, while being amenable to analytical treatment. We show that critical periods depend on the depth of the model and structure of the data distribution. We also show analytically and in simulations that the learning of features is tied to competition between sources. Finally, we extend our analysis to multi-task learning to show that pre-training on certain tasks can damage the transfer performance on new tasks, and show how this depends on the relationship between tasks and the duration of the pre-training stage. To the best of our knowledge, our work provides the first analytically tractable model that sheds light into why critical learning periods emerge in biological and artificial networks.

相關內容

The integration of Artificial Intelligence (AI) into automation systems has the potential to enhance efficiency and to address currently unsolved existing technical challenges. However, the industry-wide adoption of AI is hindered by the lack of standardized documentation for the complex compositions of automation systems, AI software, production hardware, and their interdependencies. This paper proposes a formal model using standards and ontologies to provide clear and structured documentation of AI applications in automation systems. The proposed information model for artificial intelligence in automation systems (AIAS) utilizes ontology design patterns to map and link various aspects of automation systems and AI software. Validated through a practical example, the model demonstrates its effectiveness in improving documentation practices and aiding the sustainable implementation of AI in industrial settings.

A common approach to make machine learning inference more efficient is to use example-specific adaptive schemes, which route or select models for each example at inference time. In this work we study a simple scheme for adaptive inference. We build a cascade of ensembles (CoE), beginning with resource-efficient models and growing to larger, more expressive models, where ensemble agreement serves as a data-dependent routing criterion. This scheme is easy to incorporate into existing inference pipelines, requires no additional training, and can be used to place models across multiple resource tiers--for instance, serving efficient models at the edge and invoking larger models in the cloud only when necessary. In cases where parallel inference is feasible, we show that CoE can improve accuracy relative to the single best model while reducing the average cost of inference by up to 7x, and provides Pareto-dominate solutions in accuracy and efficiency relative to existing adaptive inference baselines. These savings translate to an over 3x-reduction in total monetary cost when performing inference using a heterogeneous cluster of GPUs. Finally, for edge inference scenarios where portions of the cascade reside at the edge vs. in the cloud, CoE can provide a 14x reduction in communication cost and inference latency without sacrificing accuracy.

Semi-supervised learning (SSL) has attracted much attention since it reduces the expensive costs of collecting adequate well-labeled training data, especially for deep learning methods. However, traditional SSL is built upon an assumption that labeled and unlabeled data should be from the same distribution \textit{e.g.,} classes and domains. However, in practical scenarios, unlabeled data would be from unseen classes or unseen domains, and it is still challenging to exploit them by existing SSL methods. Therefore, in this paper, we proposed a unified framework to leverage these unseen unlabeled data for open-scenario semi-supervised medical image classification. We first design a novel scoring mechanism, called dual-path outliers estimation, to identify samples from unseen classes. Meanwhile, to extract unseen-domain samples, we then apply an effective variational autoencoder (VAE) pre-training. After that, we conduct domain adaptation to fully exploit the value of the detected unseen-domain samples to boost semi-supervised training. We evaluated our proposed framework on dermatology and ophthalmology tasks. Extensive experiments demonstrate our model can achieve superior classification performance in various medical SSL scenarios. The code implementations are accessible at: //github.com/PyJulie/USSL4MIC.

Quantum relative entropy programs are convex optimization problems which minimize a linear functional over an affine section of the epigraph of the quantum relative entropy function. Recently, the self-concordance of a natural barrier function was proved for this set. This has opened up the opportunity to use interior-point methods for nonsymmetric cone programs to solve these optimization problems. In this paper, we show how common structures arising from applications in quantum information theory can be exploited to improve the efficiency of solving quantum relative entropy programs using interior-point methods. First, we show that the natural barrier function for the epigraph of the quantum relative entropy composed with positive linear operators is optimally self-concordant, even when these linear operators map to singular matrices. Second, we show how we can exploit a catalogue of common structures in these linear operators to compute the inverse Hessian products of the barrier function more efficiently. This step is typically the bottleneck when solving quantum relative entropy programs using interior-point methods, and therefore improving the efficiency of this step can significantly improve the computational performance of the algorithm. We demonstrate how these methods can be applied to important applications in quantum information theory, including quantum key distribution, quantum rate-distortion, quantum channel capacities, and estimating the ground state energy of Hamiltonians. Our numerical results show that these techniques improve computation times by up to several orders of magnitude, and allow previously intractable problems to be solved.

Reinforcement learning from human feedback (RLHF) is fundamentally limited by the capacity of humans to correctly evaluate model output. To improve human evaluation ability and overcome that limitation this work trains "critic" models that help humans to more accurately evaluate model-written code. These critics are themselves LLMs trained with RLHF to write natural language feedback highlighting problems in code from real-world assistant tasks. On code containing naturally occurring LLM errors model-written critiques are preferred over human critiques in 63% of cases, and human evaluation finds that models catch more bugs than human contractors paid for code review. We further confirm that our fine-tuned LLM critics can successfully identify hundreds of errors in ChatGPT training data rated as "flawless", even though the majority of those tasks are non-code tasks and thus out-of-distribution for the critic model. Critics can have limitations of their own, including hallucinated bugs that could mislead humans into making mistakes they might have otherwise avoided, but human-machine teams of critics and contractors catch similar numbers of bugs to LLM critics while hallucinating less than LLMs alone.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain the predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we generate a set of benchmark graph datasets specifically for GNN explainability. We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.

Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks. Prior methods have been focused on overcoming this problem on convolutional neural networks (CNNs), where the input samples like images lie in a grid domain, but have largely overlooked graph neural networks (GNNs) that handle non-grid data. In this paper, we propose a novel scheme dedicated to overcoming catastrophic forgetting problem and hence strengthen continual learning in GNNs. At the heart of our approach is a generic module, termed as topology-aware weight preserving~(TWP), applicable to arbitrary form of GNNs in a plug-and-play fashion. Unlike the main stream of CNN-based continual learning methods that rely on solely slowing down the updates of parameters important to the downstream task, TWP explicitly explores the local structures of the input graph, and attempts to stabilize the parameters playing pivotal roles in the topological aggregation. We evaluate TWP on different GNN backbones over several datasets, and demonstrate that it yields performances superior to the state of the art. Code is publicly available at \url{//github.com/hhliu79/TWP}.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司