Temporal video grounding (TVG) is a critical task in video content understanding, requiring precise alignment between video content and natural language instructions. Despite significant advancements, existing methods face challenges in managing confidence bias towards salient objects and capturing long-term dependencies in video sequences. To address these issues, we introduce SpikeMba: a multi-modal spiking saliency mamba for temporal video grounding. Our approach integrates Spiking Neural Networks (SNNs) with state space models (SSMs) to leverage their unique advantages in handling different aspects of the task. Specifically, we use SNNs to develop a spiking saliency detector that generates the proposal set. The detector emits spike signals when the input signal exceeds a predefined threshold, resulting in a dynamic and binary saliency proposal set. To enhance the model's capability to retain and infer contextual information, we introduce relevant slots which learnable tensors that encode prior knowledge. These slots work with the contextual moment reasoner to maintain a balance between preserving contextual information and exploring semantic relevance dynamically. The SSMs facilitate selective information propagation, addressing the challenge of long-term dependency in video content. By combining SNNs for proposal generation and SSMs for effective contextual reasoning, SpikeMba addresses confidence bias and long-term dependencies, thereby significantly enhancing fine-grained multimodal relationship capture. Our experiments demonstrate the effectiveness of SpikeMba, which consistently outperforms state-of-the-art methods across mainstream benchmarks.
Morphing attacks are an emerging threat to state-of-the-art Face Recognition (FR) systems, which aim to create a single image that contains the biometric information of multiple identities. Diffusion Morphs (DiM) are a recently proposed morphing attack that has achieved state-of-the-art performance for representation-based morphing attacks. However, none of the existing research on DiMs have leveraged the iterative nature of DiMs and left the DiM model as a black box, treating it no differently than one would a Generative Adversarial Network (GAN) or Varational AutoEncoder (VAE). We propose a greedy strategy on the iterative sampling process of DiM models which searches for an optimal step guided by an identity-based heuristic function. We compare our proposed algorithm against ten other state-of-the-art morphing algorithms using the open-source SYN-MAD 2022 competition dataset. We find that our proposed algorithm is unreasonably effective, fooling all of the tested FR systems with an MMPMR of 100%, outperforming all other morphing algorithms compared.
Inter-frame modeling is pivotal in generating intermediate frames for video frame interpolation (VFI). Current approaches predominantly rely on convolution or attention-based models, which often either lack sufficient receptive fields or entail significant computational overheads. Recently, Selective State Space Models (S6) have emerged, tailored specifically for long sequence modeling, offering both linear complexity and data-dependent modeling capabilities. In this paper, we propose VFIMamba, a novel frame interpolation method for efficient and dynamic inter-frame modeling by harnessing the S6 model. Our approach introduces the Mixed-SSM Block (MSB), which initially rearranges tokens from adjacent frames in an interleaved fashion and subsequently applies multi-directional S6 modeling. This design facilitates the efficient transmission of information across frames while upholding linear complexity. Furthermore, we introduce a novel curriculum learning strategy that progressively cultivates proficiency in modeling inter-frame dynamics across varying motion magnitudes, fully unleashing the potential of the S6 model. Experimental findings showcase that our method attains state-of-the-art performance across diverse benchmarks, particularly excelling in high-resolution scenarios. In particular, on the X-TEST dataset, VFIMamba demonstrates a noteworthy improvement of 0.80 dB for 4K frames and 0.96 dB for 2K frames.
Audio-visual speech recognition (AVSR) is a multimodal extension of automatic speech recognition (ASR), using video as a complement to audio. In AVSR, considerable efforts have been directed at datasets for facial features such as lip-readings, while they often fall short in evaluating the image comprehension capabilities in broader contexts. In this paper, we construct SlideAVSR, an AVSR dataset using scientific paper explanation videos. SlideAVSR provides a new benchmark where models transcribe speech utterances with texts on the slides on the presentation recordings. As technical terminologies that are frequent in paper explanations are notoriously challenging to transcribe without reference texts, our SlideAVSR dataset spotlights a new aspect of AVSR problems. As a simple yet effective baseline, we propose DocWhisper, an AVSR model that can refer to textual information from slides, and confirm its effectiveness on SlideAVSR.
Integrating LiDAR and camera information into Bird's-Eye-View (BEV) representation has emerged as a crucial aspect of 3D object detection in autonomous driving. However, existing methods are susceptible to the inaccurate calibration relationship between LiDAR and the camera sensor. Such inaccuracies result in errors in depth estimation for the camera branch, ultimately causing misalignment between LiDAR and camera BEV features. In this work, we propose a robust fusion framework called Graph BEV. Addressing errors caused by inaccurate point cloud projection, we introduce a Local Align module that employs neighbor-aware depth features via Graph matching. Additionally, we propose a Global Align module to rectify the misalignment between LiDAR and camera BEV features. Our Graph BEV framework achieves state-of-the-art performance, with an mAP of 70.1\%, surpassing BEV Fusion by 1.6\% on the nuscenes validation set. Importantly, our Graph BEV outperforms BEV Fusion by 8.3\% under conditions with misalignment noise.
4D head capture aims to generate dynamic topological meshes and corresponding texture maps from videos, which is widely utilized in movies and games for its ability to simulate facial muscle movements and recover dynamic textures in pore-squeezing. The industry often adopts the method involving multi-view stereo and non-rigid alignment. However, this approach is prone to errors and heavily reliant on time-consuming manual processing by artists. To simplify this process, we propose Topo4D, a novel framework for automatic geometry and texture generation, which optimizes densely aligned 4D heads and 8K texture maps directly from calibrated multi-view time-series images. Specifically, we first represent the time-series faces as a set of dynamic 3D Gaussians with fixed topology in which the Gaussian centers are bound to the mesh vertices. Afterward, we perform alternative geometry and texture optimization frame-by-frame for high-quality geometry and texture learning while maintaining temporal topology stability. Finally, we can extract dynamic facial meshes in regular wiring arrangement and high-fidelity textures with pore-level details from the learned Gaussians. Extensive experiments show that our method achieves superior results than the current SOTA face reconstruction methods both in the quality of meshes and textures. Project page: //xuanchenli.github.io/Topo4D/.
Video Temporal Grounding (VTG) focuses on accurately identifying event timestamps within a particular video based on a linguistic query, playing a vital role in downstream tasks such as video browsing and editing. While Video Large Language Models (video LLMs) have made significant progress in understanding video content, they often face challenges in accurately pinpointing timestamps within videos, which limits their performance on VTG tasks. Therefore, to improve video LLMs' ability to effectively locate timestamps, we argue that two critical aspects need to be enhanced. First, it is essential to have high-quality instructional tuning datasets that encompass mainstream VTG tasks. Second, directly incorporating timestamp knowledge into video LLMs is crucial, as it enables models to efficiently comprehend timestamp information. To address these needs, we first introduce VTG-IT-120K, a high-quality and comprehensive instruction tuning dataset that covers VTG tasks such as moment retrieval, dense video captioning, video summarization, and video highlight detection. Furthermore, we propose a specially designed video LLM model for VTG tasks, VTG-LLM, which (1) effectively integrates timestamp knowledge into visual tokens; (2) incorporates absolute-time tokens that specifically handle timestamp knowledge, thereby avoiding concept shifts; and (3) introduces a lightweight, high-performance slot-based token compression method to facilitate the sampling of more video frames. Comprehensive experiments showcase the superior performance of VTG-LLM in comparison to other video LLM methods across various VTG tasks. Our code and datasets are available at \url{//github.com/gyxxyg/VTG-LLM}.
Motion-based controllable text-to-video generation involves motions to control the video generation. Previous methods typically require the training of models to encode motion cues or the fine-tuning of video diffusion models. However, these approaches often result in suboptimal motion generation when applied outside the trained domain. In this work, we propose MotionClone, a training-free framework that enables motion cloning from a reference video to control text-to-video generation. We employ temporal attention in video inversion to represent the motions in the reference video and introduce primary temporal-attention guidance to mitigate the influence of noisy or very subtle motions within the attention weights. Furthermore, to assist the generation model in synthesizing reasonable spatial relationships and enhance its prompt-following capability, we propose a location-aware semantic guidance mechanism that leverages the coarse location of the foreground from the reference video and original classifier-free guidance features to guide the video generation. Extensive experiments demonstrate that MotionClone exhibits proficiency in both global camera motion and local object motion, with notable superiority in terms of motion fidelity, textual alignment, and temporal consistency.
As DeepFake video manipulation techniques escalate, posing profound threats, the urgent need to develop efficient detection strategies is underscored. However, one particular issue lies with facial images being mis-detected, often originating from degraded videos or adversarial attacks, leading to unexpected temporal artifacts that can undermine the efficacy of DeepFake video detection techniques. This paper introduces a novel method for robust DeepFake video detection, harnessing the power of the proposed Graph-Regularized Attentive Convolutional Entanglement (GRACE) based on the graph convolutional network with graph Laplacian to address the aforementioned challenges. First, conventional Convolution Neural Networks are deployed to perform spatiotemporal features for the entire video. Then, the spatial and temporal features are mutually entangled by constructing a graph with sparse constraint, enforcing essential features of valid face images in the noisy face sequences remaining, thus augmenting stability and performance for DeepFake video detection. Furthermore, the Graph Laplacian prior is proposed in the graph convolutional network to remove the noise pattern in the feature space to further improve the performance. Comprehensive experiments are conducted to illustrate that our proposed method delivers state-of-the-art performance in DeepFake video detection under noisy face sequences. The source code is available at //github.com/ming053l/GRACE.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.