Problematic smartphone use negatively affects physical and mental health. Despite the wide range of prior research, existing persuasive techniques are not flexible enough to provide dynamic persuasion content based on users' physical contexts and mental states. We first conduct a Wizard-of-Oz study (N=12) and an interview study (N=10) to summarize the mental states behind problematic smartphone use: boredom, stress, and inertia. This informs our design of four persuasion strategies: understanding, comforting, evoking, and scaffolding habits. We leverage large language models (LLMs) to enable the automatic and dynamic generation of effective persuasion content. We develop MindShift, a novel LLM-powered problematic smartphone use intervention technique. MindShift takes users' in-the-moment physical contexts, mental states, app usage behaviors, users' goals & habits as input, and generates high-quality and flexible persuasive content with appropriate persuasion strategies. We conduct a 5-week field experiment (N=25) to compare MindShift with baseline techniques. The results show that MindShift significantly improves intervention acceptance rates by 17.8-22.5% and reduces smartphone use frequency by 12.1-14.4%. Moreover, users have a significant drop in smartphone addiction scale scores and a rise in self-efficacy. Our study sheds light on the potential of leveraging LLMs for context-aware persuasion in other behavior change domains.
Quantifying predictive uncertainty of deep semantic segmentation networks is essential in safety-critical tasks. In applications like autonomous driving, where video data is available, convolutional long short-term memory networks are capable of not only providing semantic segmentations but also predicting the segmentations of the next timesteps. These models use cell states to broadcast information from previous data by taking a time series of inputs to predict one or even further steps into the future. We present a temporal postprocessing method which estimates the prediction performance of convolutional long short-term memory networks by either predicting the intersection over union of predicted and ground truth segments or classifying between intersection over union being equal to zero or greater than zero. To this end, we create temporal cell state-based input metrics per segment and investigate different models for the estimation of the predictive quality based on these metrics. We further study the influence of the number of considered cell states for the proposed metrics.
Deep neural networks (DNNs) are widely used in various application domains such as image processing, speech recognition, and natural language processing. However, testing DNN models may be challenging due to the complexity and size of their input domain. Particularly, testing DNN models often requires generating or exploring large unlabeled datasets. In practice, DNN test oracles, which identify the correct outputs for inputs, often require expensive manual effort to label test data, possibly involving multiple experts to ensure labeling correctness. In this paper, we propose DeepGD, a black-box multi-objective test selection approach for DNN models. It reduces the cost of labeling by prioritizing the selection of test inputs with high fault revealing power from large unlabeled datasets. DeepGD not only selects test inputs with high uncertainty scores to trigger as many mispredicted inputs as possible but also maximizes the probability of revealing distinct faults in the DNN model by selecting diverse mispredicted inputs. The experimental results conducted on four widely used datasets and five DNN models show that in terms of fault-revealing ability: (1) White-box, coverage-based approaches fare poorly, (2) DeepGD outperforms existing black-box test selection approaches in terms of fault detection, and (3) DeepGD also leads to better guidance for DNN model retraining when using selected inputs to augment the training set.
As more non-AI experts use complex AI systems for daily tasks, there has been an increasing effort to develop methods that produce explanations of AI decision making that are understandable by non-AI experts. Towards this effort, leveraging higher-level concepts and producing concept-based explanations have become a popular method. Most concept-based explanations have been developed for classification techniques, and we posit that the few existing methods for sequential decision making are limited in scope. In this work, we first contribute a desiderata for defining concepts in sequential decision making settings. Additionally, inspired by the Protege Effect which states explaining knowledge often reinforces one's self-learning, we explore how concept-based explanations of an RL agent's decision making can in turn improve the agent's learning rate, as well as improve end-user understanding of the agent's decision making. To this end, we contribute a unified framework, State2Explanation (S2E), that involves learning a joint embedding model between state-action pairs and concept-based explanations, and leveraging such learned model to both (1) inform reward shaping during an agent's training, and (2) provide explanations to end-users at deployment for improved task performance. Our experimental validations, in Connect 4 and Lunar Lander, demonstrate the success of S2E in providing a dual-benefit, successfully informing reward shaping and improving agent learning rate, as well as significantly improving end user task performance at deployment time.
Automated medical image segmentation is becoming increasingly crucial to modern clinical practice, driven by the growing demand for precise diagnosis, the push towards personalized treatment plans, and the advancements in machine learning algorithms, especially the incorporation of deep learning methods. While convolutional neural networks (CNN) have been prevalent among these methods, the remarkable potential of Transformer-based models for computer vision tasks is gaining more acknowledgment. To harness the advantages of both CNN-based and Transformer-based models, we propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation. In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images, then the maps are propagated into a bridge layer, which is introduced to sequentially connect the UNet and the Transformer. In this stage, we approach the pixel-level embedding technique without position embedding vectors, aiming to make the model more efficient. Moreover, we apply spatial-reduction attention in the Transformer to reduce the computational/memory overhead. By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements. The proposed model is extensively experimented on seven medical image segmentation datasets including polyp segmentation to demonstrate its efficacy. Comparison with several state-of-the-art segmentation models on these datasets shows the superior performance of our proposed seUNet-Trans network.
Despite the proven effectiveness of Transformer neural networks across multiple domains, their performance with Electronic Health Records (EHR) can be nuanced. The unique, multidimensional sequential nature of EHR data can sometimes make even simple linear models with carefully engineered features more competitive. Thus, the advantages of Transformers, such as efficient transfer learning and improved scalability are not always fully exploited in EHR applications. Addressing these challenges, we introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data. In this work, we aim to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities. The challenge amplifies when dealing with divergent patient subgroups, like those with rare diseases, which are characterized by unique health trajectories and are typically smaller in size. To address this, we employ a self-supervised pretraining strategy, Generative Summary Pretraining (GSP), which predicts future summary statistics based on past health records of a patient. Our models are pretrained on a health registry of nearly one million patients, then fine-tuned for specific subgroup prediction tasks, showcasing the potential to handle the multifaceted nature of EHR data. In evaluation, SANSformer consistently surpasses robust EHR baselines, with our GSP pretraining method notably amplifying model performance, particularly within smaller patient subgroups. Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
Recently, Transformers have shown promising performance in various vision tasks. However, the high costs of global self-attention remain challenging for Transformers, especially for high-resolution vision tasks. Inspired by one of the most successful transformers-based models for NLP: Big Bird, we propose a novel sparse attention mechanism for Vision Transformers (ViT). Specifically, we separate the heads into three groups, the first group used convolutional neural network (CNN) to extract local features and provide positional information for the model, the second group used Random Sampling Windows (RS-Win) for sparse self-attention calculation, and the third group reduces the resolution of the keys and values by average pooling for global attention. Based on these components, ViT maintains the sparsity of self-attention while maintaining the merits of Big Bird (i.e., the model is a universal approximator of sequence functions and is Turing complete). Moreover, our results show that the positional encoding, a crucial component in ViTs, can be safely removed in our model. Experiments show that Vision Big Bird demonstrates competitive performance on common vision tasks.
Emerging deep learning workloads urgently need fast general matrix multiplication (GEMM). To meet such demand, one of the critical features of machine-learning-specific accelerators such as NVIDIA Tensor Cores, AMD Matrix Cores, and Google TPUs is the support of mixed-precision enabled GEMM. For DNN models, lower-precision FP data formats and computation offer acceptable correctness but significant performance, area, and memory footprint improvement. While promising, the mixed-precision computation on error resilience remains unexplored. To this end, we develop a fault injection framework that systematically injects fault into the mixed-precision computation results. We investigate how the faults affect the accuracy of machine learning applications. Based on the error resilience characteristics, we offer lightweight error detection and correction solutions that significantly improve the overall model accuracy if the models experience hardware faults. The solutions can be efficiently integrated into the accelerator's pipelines.
Recent research indicates that frequent model communication stands as a major bottleneck to the efficiency of decentralized machine learning (ML), particularly for large-scale and over-parameterized neural networks (NNs). In this paper, we introduce MALCOM-PSGD, a new decentralized ML algorithm that strategically integrates gradient compression techniques with model sparsification. MALCOM-PSGD leverages proximal stochastic gradient descent to handle the non-smoothness resulting from the $\ell_1$ regularization in model sparsification. Furthermore, we adapt vector source coding and dithering-based quantization for compressed gradient communication of sparsified models. Our analysis shows that decentralized proximal stochastic gradient descent with compressed communication has a convergence rate of $\mathcal{O}\left(\ln(t)/\sqrt{t}\right)$ assuming a diminishing learning rate and where $t$ denotes the number of iterations. Numerical results verify our theoretical findings and demonstrate that our method reduces communication costs by approximately $75\%$ when compared to the state-of-the-art method.
Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.
Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.