Today, the security of many domains rely on the use of Machine Learning to detect threats, identify vulnerabilities, and safeguard systems from attacks. Recently, transformer architectures have improved the state-of-the-art performance on a wide range of tasks such as malware detection and network intrusion detection. But, before abandoning current approaches to transformers, it is crucial to understand their properties and implications on cybersecurity applications. In this paper, we evaluate the robustness of transformers to adversarial samples for system defenders (i.e., resiliency to adversarial perturbations generated on different types of architectures) and their adversarial strength for system attackers (i.e., transferability of adversarial samples generated by transformers to other target models). To that effect, we first fine-tune a set of pre-trained transformer, Convolutional Neural Network (CNN), and hybrid (an ensemble of transformer and CNN) models to solve different downstream image-based tasks. Then, we use an attack algorithm to craft 19,367 adversarial examples on each model for each task. The transferability of these adversarial examples is measured by evaluating each set on other models to determine which models offer more adversarial strength, and consequently, more robustness against these attacks. We find that the adversarial examples crafted on transformers offer the highest transferability rate (i.e., 25.7% higher than the average) onto other models. Similarly, adversarial examples crafted on other models have the lowest rate of transferability (i.e., 56.7% lower than the average) onto transformers. Our work emphasizes the importance of studying transformer architectures for attacking and defending models in security domains, and suggests using them as the primary architecture in transfer attack settings.
As sixth-generation (6G) wireless communication networks evolve, privacy concerns are expected due to the transmission of vast amounts of security-sensitive private information. In this context, a reconfigurable intelligent surface (RIS) emerges as a promising technology capable of enhancing transmission efficiency and strengthening information security. This study demonstrates how RISs can play a crucial role in making 6G networks more secure against eavesdropping attacks. We discuss the fundamentals, and standardization aspects of RISs, along with an in-depth analysis of physical-layer security (PLS). Our discussion centers on PLS design using RIS, highlighting aspects like beamforming, resource allocation, artificial noise, and cooperative communications. We also identify the research issues, propose potential solutions, and explore future perspectives. Finally, numerical results are provided to support our discussions and demonstrate the enhanced security enabled by RIS.
6G networks are envisioned to deliver a large diversity of applications and meet stringent quality of service (QoS) requirements. Hence, integrated terrestrial and non-terrestrial networks (TN-NTNs) are anticipated to be key enabling technologies. However, the TN-NTNs integration faces a number of challenges that could be addressed through network virtualization technologies such as Software-Defined Networking (SDN), Network Function Virtualization (NFV) and network slicing. In this survey, we provide a comprehensive review on the adaptation of these networking paradigms in 6G networks. We begin with a brief overview on NTNs and virtualization techniques. Then, we highlight the integral role of Artificial Intelligence in improving network virtualization by summarizing major research areas where AI models are applied. Building on this foundation, the survey identifies the main issues arising from the adaptation of SDN, NFV, and network slicing in integrated TN-NTNs, and proposes a taxonomy of integrated TN-NTNs virtualization offering a thorough review of relevant contributions. The taxonomy is built on a four-level classification indicating for each study the level of TN-NTNs integration, the used virtualization technology, the addressed problem, the type of the study and the proposed solution, which can be based on conventional or AI-enabled methods. Moreover, we present a summary on the simulation tools commonly used in the testing and validation of such networks. Finally, we discuss open issues and give insights on future research directions for the advancement of integrated TN-NTNs virtualization in the 6G era.
In the face of growing vulnerabilities found in open-source software, the need to identify {discreet} security patches has become paramount. The lack of consistency in how software providers handle maintenance often leads to the release of security patches without comprehensive advisories, leaving users vulnerable to unaddressed security risks. To address this pressing issue, we introduce a novel security patch detection system, LLMDA, which capitalizes on Large Language Models (LLMs) and code-text alignment methodologies for patch review, data enhancement, and feature combination. Within LLMDA, we initially utilize LLMs for examining patches and expanding data of PatchDB and SPI-DB, two security patch datasets from recent literature. We then use labeled instructions to direct our LLMDA, differentiating patches based on security relevance. Following this, we apply a PTFormer to merge patches with code, formulating hybrid attributes that encompass both the innate details and the interconnections between the patches and the code. This distinctive combination method allows our system to capture more insights from the combined context of patches and code, hence improving detection precision. Finally, we devise a probabilistic batch contrastive learning mechanism within batches to augment the capability of the our LLMDA in discerning security patches. The results reveal that LLMDA significantly surpasses the start of the art techniques in detecting security patches, underscoring its promise in fortifying software maintenance.
We explore security aspects of a new computing paradigm that combines novel memristors and traditional Complimentary Metal Oxide Semiconductor (CMOS) to construct a highly efficient analog and/or digital fabric that is especially well-suited to Machine Learning (ML) inference processors for Radio Frequency (RF) signals. Memristors have different properties than traditional CMOS which can potentially be exploited by attackers. In addition, the mixed signal approximate computing model has different vulnerabilities than traditional digital implementations. However both the memristor and the ML computation can be leveraged to create security mechanisms and countermeasures ranging from lightweight cryptography, identifiers (e.g. Physically Unclonable Functions (PUFs), fingerprints, and watermarks), entropy sources, hardware obfuscation and leakage/attack detection methods. Three different threat models are proposed: 1) Supply Chain, 2) Physical Attacks, and 3) Remote Attacks. For each threat model, potential vulnerabilities and defenses are identified. This survey reviews a variety of recent work from the hardware and ML security literature and proposes open problems for both attack and defense. The survey emphasizes the growing area of RF signal analysis and identification in terms of the commercial space, as well as military applications and threat models. We differ from other other recent surveys that target ML in general, neglecting RF applications.
Internet of Things (IoT) applications are composed of massive quantities of resource-limited devices that collect sensitive data with long-term operational and security requirements. With the threat of emerging quantum computers, Post-Quantum Cryptography (PQC) is a critical requirement for IoTs. In particular, digital signatures offer scalable authentication with non-repudiation and are an essential tool for IoTs. However, as seen in NIST PQC standardization, post-quantum signatures are extremely costly for resource-limited IoTs. Hence, there is a significant need for quantum-safe signatures that respect the processing, memory, and bandwidth limitations of IoTs. In this paper, we created a new lightweight quantum-safe digital signature referred to as INFinity-HORS (INF-HORS), which is (to the best of our knowledge) the first signer-optimal hash-based signature with (polynomially) unbounded signing capability. INF-HORS enables a verifier to non-interactively construct one-time public keys from a master public key via encrypted function evaluations. This strategy avoids the performance bottleneck of hash-based standards (e.g., SPHINCS+) by eliminating hyper-tree structures. It also does not require a trusted party or non-colliding servers to distribute public keys. Our performance analysis confirms that INF-HORS is magnitudes of times more signer computation efficient than selected NIST PQC schemes (e.g., SPHINCS+, Dilithium, Falcon) with a small memory footprint.
Purpose: To develop an efficient dual-domain reconstruction framework for multi-contrast MRI, with the focus on minimising cross-contrast misalignment in both the image and the frequency domains to enhance optimisation. Theory and Methods: Our proposed framework, based on deep learning, facilitates the optimisation for under-sampled target contrast using fully-sampled reference contrast that is quicker to acquire. The method consists of three key steps: 1) Learning to synthesise data resembling the target contrast from the reference contrast; 2) Registering the multi-contrast data to reduce inter-scan motion; and 3) Utilising the registered data for reconstructing the target contrast. These steps involve learning in both domains with regularisation applied to ensure their consistency. We also compare the reconstruction performance with existing deep learning-based methods using a dataset of brain MRI scans. Results: Extensive experiments demonstrate the superiority of our proposed framework, for up to an 8-fold acceleration rate, compared to state-of-the-art algorithms. Comprehensive analysis and ablation studies further present the effectiveness of the proposed components. Conclusion:Our dual-domain framework offers a promising approach to multi-contrast MRI reconstruction. It can also be integrated with existing methods to further enhance the reconstruction.
Multi-paragraph reasoning is indispensable for open-domain question answering (OpenQA), which receives less attention in the current OpenQA systems. In this work, we propose a knowledge-enhanced graph neural network (KGNN), which performs reasoning over multiple paragraphs with entities. To explicitly capture the entities' relatedness, KGNN utilizes relational facts in knowledge graph to build the entity graph. The experimental results show that KGNN outperforms in both distractor and full wiki settings than baselines methods on HotpotQA dataset. And our further analysis illustrates KGNN is effective and robust with more retrieved paragraphs.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.