亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a simplification of robotic system model analysis due to the transfer of Robotic System Hierarchical Petri Net (RSHPN) meta-model properties onto the model of a designed system. Key contributions include: 1) analysis of RSHPN meta-model properties; 2) decomposition of RSHPN analysis into analysis of individual Petri nets, thus the reduction of state space explosion; and 3) transfer of RSHPN meta-model properties onto the produced models, hence elimination of the need for full re-analysis of the RSHPN model when creating new robotic systems. Only task-dependent parts of the model need to be analyzed. This approach streamlines the analysis thus reducing the design time. Moreover, it produces a specification which is a solid foundation for the implementation of the system. The obtained results highlight the potential of Petri nets as a valuable formal framework for analyzing robotic system properties.

相關內容

This work introduces a new approach to the Epileptic Spasms (ESES) detection based on the EEG signals using Vision Transformers (ViT). Classic ESES detection approaches have usually been performed with manual processing or conventional algorithms, suffering from poor sample sizes, single-channel-based analyses, and low generalization abilities. In contrast, the proposed ViT model overcomes these limitations by using the attention mechanism to focus on the important features in multi-channel EEG data, which is contributing to both better accuracy and efficiency. The model processes frequency-domain representations of EEG signals, such as spectrograms, as image data to capture long-range dependencies and complex patterns in the signal. The model demonstrates high performance with an accuracy of 97% without requiring intensive data preprocessing, thus rendering it suitable for real-time clinical applications on a large scale. The method represents a significant development in the advancement of neurological disorders such as ESES in detection and analysis.

Reconfigurable Intelligent Surfaces (RISs) are a promising technique for enhancing the performance of Next Generation (NextG) wireless communication systems in terms of both spectral and energy efficiency, as well as resource utilization. However, current RIS research has primarily focused on theoretical modeling and Physical (PHY) layer considerations only. Full protocol stack emulation and accurate modeling of the propagation characteristics of the wireless channel are necessary for studying the benefits introduced by RIS technology across various spectrum bands and use-cases. In this paper, we propose, for the first time: (i) accurate PHY layer RIS-enabled channel modeling through Geometry-Based Stochastic Models (GBSMs), leveraging the QUAsi Deterministic RadIo channel GenerAtor (QuaDRiGa) open-source statistical ray-tracer; (ii) optimized resource allocation with RISs by comprehensively studying energy efficiency and power control on different portions of the spectrum through a single-leader multiple-followers Stackelberg game theoretical approach; (iii) full-stack emulation and performance evaluation of RIS-assisted channels with SCOPE/srsRAN for Enhanced Mobile Broadband (eMBB) and Ultra Reliable and Low Latency Communications (URLLC) applications in the worlds largest emulator of wireless systems with hardware-in-the-loop, namely Colosseum. Our findings indicate (i) the significant power savings in terms of energy efficiency achieved with RIS-assisted topologies, especially in the millimeter wave (mmWave) band; and (ii) the benefits introduced for Sub-6 GHz band User Equipments (UEs), where the deployment of a relatively small RIS (e.g., in the order of 100 RIS elements) can result in decreased levels of latency for URLLC services in resource-constrained environments.

This paper studies the computation of robust deterministic policies for Markov Decision Processes (MDPs) in the Lightning Does Not Strike Twice (LDST) model of Mannor, Mebel and Xu (ICML '12). In this model, designed to provide robustness in the face of uncertain input data while not being overly conservative, transition probabilities and rewards are uncertain and the uncertainty set is constrained by a budget that limits the number of states whose parameters can deviate from their nominal values. Mannor et al. (ICML '12) showed that optimal randomized policies for MDPs in the LDST regime can be efficiently computed when only the rewards are affected by uncertainty. In contrast to these findings, we observe that the computation of optimal deterministic policies is $N\!P$-hard even when only a single terminal reward may deviate from its nominal value and the MDP consists of $2$ time periods. For this hard special case, we then derive a constant-factor approximation algorithm by combining two relaxations based on the Knapsack Cover and Generalized Assignment problem, respectively. For the general problem with possibly a large number of deviations and a longer time horizon, we derive strong inapproximability results for computing robust deterministic policies as well as $\Sigma_2^p$-hardness, indicating that the general problem does not even admit a compact mixed integer programming formulation.

With the increased popularity of Deep Neural Networks (DNNs), increases also the need for tools to assist developers in the DNN implementation, testing and debugging process. Several approaches have been proposed that automatically analyse and localise potential faults in DNNs under test. In this work, we evaluate and compare existing state-of-the-art fault localisation techniques, which operate based on both dynamic and static analysis of the DNN. The evaluation is performed on a benchmark consisting of both real faults obtained from bug reporting platforms and faulty models produced by a mutation tool. Our findings indicate that the usage of a single, specific ground truth (e.g., the human defined one) for the evaluation of DNN fault localisation tools results in pretty low performance (maximum average recall of 0.31 and precision of 0.23). However, such figures increase when considering alternative, equivalent patches that exist for a given faulty DNN. Results indicate that \dfd is the most effective tool, achieving an average recall of 0.61 and precision of 0.41 on our benchmark.

This paper introduces a novel method for open-vocabulary 3D scene querying in autonomous driving by combining Language Embedded 3D Gaussians with Large Language Models (LLMs). We propose utilizing LLMs to generate both contextually canonical phrases and helping positive words for enhanced segmentation and scene interpretation. Our method leverages GPT-3.5 Turbo as an expert model to create a high-quality text dataset, which we then use to fine-tune smaller, more efficient LLMs for on-device deployment. Our comprehensive evaluation on the WayveScenes101 dataset demonstrates that LLM-guided segmentation significantly outperforms traditional approaches based on predefined canonical phrases. Notably, our fine-tuned smaller models achieve performance comparable to larger expert models while maintaining faster inference times. Through ablation studies, we discover that the effectiveness of helping positive words correlates with model scale, with larger models better equipped to leverage additional semantic information. This work represents a significant advancement towards more efficient, context-aware autonomous driving systems, effectively bridging 3D scene representation with high-level semantic querying while maintaining practical deployment considerations.

Active imaging systems sample the Transient Light Transport Matrix (TLTM) for a scene by sequentially illuminating various positions in this scene using a controllable light source, and then measuring the resulting spatiotemporal light transport with time of flight (ToF) sensors. Time-resolved Non-line-of-sight (NLOS) imaging employs an active imaging system that measures part of the TLTM of an intermediary relay surface, and uses the indirect reflections of light encoded within this TLTM to "see around corners". Such imaging systems have applications in diverse areas such as disaster response, remote surveillance, and autonomous navigation. While existing NLOS imaging systems usually measure a subset of the full TLTM, development of customized gated Single Photon Avalanche Diode (SPAD) arrays \cite{riccardo_fast-gated_2022} has made it feasible to probe the full measurement space. In this work, we demonstrate that the full TLTM on the relay surface can be processed with efficient algorithms to computationally focus and detect our illumination in different parts of the hidden scene, turning the relay surface into a second-order active imaging system. These algorithms allow us to iterate on the measured, first-order TLTM, and extract a \textbf{second order TLTM for surfaces in the hidden scene}. We showcase three applications of TLTMs in NLOS imaging: (1) Scene Relighting with novel illumination, (2) Separation of direct and indirect components of light transport in the hidden scene, and (3) Dual Photography. Additionally, we empirically demonstrate that SPAD arrays enable parallel acquisition of photons, effectively mitigating long acquisition times.

This survey presents an in-depth exploration of knowledge distillation (KD) techniques within the realm of Large Language Models (LLMs), spotlighting the pivotal role of KD in transferring sophisticated capabilities from proprietary giants such as GPT-4 to accessible, open-source models like LLaMA and Mistral. Amidst the evolving AI landscape, this work elucidates the critical disparities between proprietary and open-source LLMs, demonstrating how KD serves as an essential conduit for imbuing the latter with the former's advanced functionalities and nuanced understandings. Our survey is meticulously structured around three foundational pillars: algorithm, skill, and verticalization -- providing a comprehensive examination of KD mechanisms, the enhancement of specific cognitive abilities, and their practical implications across diverse fields. Crucially, the survey navigates the intricate interplay between data augmentation (DA) and KD, illustrating how DA emerges as a powerful paradigm within the KD framework to bolster LLMs' performance. By leveraging DA to generate context-rich, skill-specific training data, KD transcends traditional boundaries, enabling open-source models to approximate the contextual adeptness, ethical alignment, and deep semantic insights characteristic of their proprietary counterparts. This work aims to provide an insightful guide for researchers and practitioners, offering a detailed overview of current methodologies in knowledge distillation and proposing future research directions. By bridging the gap between proprietary and open-source LLMs, this survey underscores the potential for more accessible, efficient, and sustainable AI solutions, fostering a more inclusive and equitable landscape in AI advancements. An associated Github repository is available at //github.com/Tebmer/Awesome-Knowledge-Distillation-of-LLMs.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

We study the problem of incorporating prior knowledge into a deep Transformer-based model,i.e.,Bidirectional Encoder Representations from Transformers (BERT), to enhance its performance on semantic textual matching tasks. By probing and analyzing what BERT has already known when solving this task, we obtain better understanding of what task-specific knowledge BERT needs the most and where it is most needed. The analysis further motivates us to take a different approach than most existing works. Instead of using prior knowledge to create a new training task for fine-tuning BERT, we directly inject knowledge into BERT's multi-head attention mechanism. This leads us to a simple yet effective approach that enjoys fast training stage as it saves the model from training on additional data or tasks other than the main task. Extensive experiments demonstrate that the proposed knowledge-enhanced BERT is able to consistently improve semantic textual matching performance over the original BERT model, and the performance benefit is most salient when training data is scarce.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司