亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pilot sequence design over doubly selective channels (DSC) is challenging due to the variations in both the time- and frequency-domains. Against this background, the contribution of this paper is twofold: Firstly, we investigate the optimal sequence design criteria for efficient channel estimation in orthogonal frequency division multiplexing systems under DSC. Secondly, to design pilot sequences that can satisfy the derived criteria, we propose a new metric called oversampled ambiguity function (O-AF), which considers both fractional and integer Doppler frequency shifts. Optimizing the sidelobes of O-AF through a modified iterative twisted approximation (ITROX) algorithm, we develop a new class of pilot sequences called ``oversampled low ambiguity zone (O-LAZ) sequences". Through numerical experiments, we evaluate the efficiency of the proposed O-LAZ sequences over the traditional low ambiguity zone (LAZ) sequences, Zadoff-Chu (ZC) sequences and m-sequences, by comparing their channel estimation performances over DSC.

相關內容

Semantic segmentation models are typically trained on a fixed set of classes, limiting their applicability in open-world scenarios. Class-incremental semantic segmentation aims to update models with emerging new classes while preventing catastrophic forgetting of previously learned ones. However, existing methods impose strict rigidity on old classes, reducing their effectiveness in learning new incremental classes. In this work, we propose Taxonomy-Oriented Poincar\'e-regularized Incremental-Class Segmentation (TOPICS) that learns feature embeddings in hyperbolic space following explicit taxonomy-tree structures. This supervision provides plasticity for old classes, updating ancestors based on new classes while integrating new classes at fitting positions. Additionally, we maintain implicit class relational constraints on the geometric basis of the Poincar\'e ball. This ensures that the latent space can continuously adapt to new constraints while maintaining a robust structure to combat catastrophic forgetting. We also establish eight realistic incremental learning protocols for autonomous driving scenarios, where novel classes can originate from known classes or the background. Extensive evaluations of TOPICS on the Cityscapes and Mapillary Vistas 2.0 benchmarks demonstrate that it achieves state-of-the-art performance. We make the code and trained models publicly available at //topics.cs.uni-freiburg.de.

Language models (LMs) have achieved impressive accuracy across a variety of tasks but remain vulnerable to high-confidence misclassifications, also referred to as unknown unknowns (UUs). These UUs cluster into blind spots in the feature space, leading to significant risks in high-stakes applications. This is particularly relevant for smaller, lightweight LMs that are more susceptible to such errors. While the identification of UUs has been extensively studied, their mitigation remains an open challenge, including how to use identified UUs to eliminate unseen blind spots. In this work, we propose a novel approach to address blind spot mitigation through the use of intelligent agents -- either humans or large LMs -- as teachers to characterize UU-type errors. By leveraging the generalization capabilities of intelligent agents, we identify patterns in high-confidence misclassifications and use them to generate targeted synthetic samples to improve model robustness and reduce blind spots. We conduct an extensive evaluation of our method on three classification tasks and demonstrate its effectiveness in reducing the number of UUs, all while maintaining a similar level of accuracy. We find that the effectiveness of human computation has a high ceiling but is highly dependent on familiarity with the underlying task. Moreover, the cost gap between humans and LMs surpasses an order of magnitude, as LMs attain human-like generalization and generation performance while being more scalable.

Current speech-based LLMs are predominantly trained on extensive ASR and TTS datasets, excelling in tasks related to these domains. However, their ability to handle direct speech-to-speech conversations remains notably constrained. These models often rely on an ASR-to-TTS chain-of-thought pipeline, converting speech into text for processing before generating audio responses, which introduces latency and loses audio features. We propose a method that implicitly internalizes ASR chain of thought into a speech LLM, enhancing its native speech understanding capabilities. Our approach reduces latency and improves the model's native understanding of speech, paving the way for more efficient and natural real-time audio interactions. We also release a large-scale synthetic conversational dataset to facilitate further research.

Large language models (LLMs) exhibit remarkable reasoning abilities, allowing them to generalize across a wide range of downstream tasks, such as commonsense reasoning or instruction following. However, as LLMs scale, inference costs become increasingly prohibitive, accumulating significantly over their life cycle. This poses the question: Can we compress pre-trained LLMs to meet diverse size and latency requirements? We leverage Neural Architecture Search (NAS) to compress LLMs by pruning structural components, such as attention heads, neurons, and layers, aiming to achieve a Pareto-optimal balance between performance and efficiency. While NAS already achieved promising results on small language models in previous work, in this paper we propose various extensions that allow us to scale to LLMs. Compared to structural pruning baselines, we show that NAS improves performance up to 3.4% on MMLU with an on-device latency speedup.

A celebrated connection in the interface of online learning and game theory establishes that players minimizing swap regret converge to correlated equilibria (CE) -- a seminal game-theoretic solution concept. Despite the long history of this problem and the renewed interest it has received in recent years, a basic question remains open: how many iterations are needed to approximate an equilibrium under the usual normal-form representation? In this paper, we provide evidence that existing learning algorithms, such as multiplicative weights update, are close to optimal. In particular, we prove lower bounds for the problem of computing a CE that can be expressed as a uniform mixture of $T$ product distributions -- namely, a uniform $T$-sparse CE; such lower bounds immediately circumscribe (computationally bounded) regret minimization algorithms in games. Our results are obtained in the algorithmic framework put forward by Kothari and Mehta (STOC 2018) in the context of computing Nash equilibria, which consists of the sum-of-squares (SoS) relaxation in conjunction with oracle access to a verification oracle; the goal in that framework is to lower bound either the degree of the SoS relaxation or the number of queries to the verification oracle. Here, we obtain two such hardness results, precluding computing i) uniform $\text{log }n$-sparse CE when $\epsilon =\text{poly}(1/\text{log }n)$ and ii) uniform $n^{1 - o(1)}$-sparse CE when $\epsilon = \text{poly}(1/n)$.

Using statistical learning methods to analyze stochastic simulation outputs can significantly enhance decision-making by uncovering relationships between different simulated systems and between a system's inputs and outputs. We focus on clustering multivariate empirical distributions of simulation outputs to identify patterns and trade-offs among performance measures. We present a novel agglomerative clustering algorithm that utilizes the regularized Wasserstein distance to cluster these multivariate empirical distributions. This framework has several important use cases, including anomaly detection, pre-optimization, and online monitoring. In numerical experiments involving a call-center model, we demonstrate how this methodology can identify staffing plans that yield similar performance outcomes and inform policies for intervening when queue lengths signal potentially worsening system performance.

This article establishes a method to answer a finite set of linear queries on a given dataset while ensuring differential privacy. To achieve this, we formulate the corresponding task as a saddle-point problem, i.e. an optimization problem whose solution corresponds to a distribution minimizing the difference between answers to the linear queries based on the true distribution and answers from a differentially private distribution. Against this background, we establish two new algorithms for corresponding differentially private data release: the first is based on the differentially private Frank-Wolfe method, the second combines randomized smoothing with stochastic convex optimization techniques for a solution to the saddle-point problem. While previous works assess the accuracy of differentially private algorithms with reference to the empirical data distribution, a key contribution of our work is a more natural evaluation of the proposed algorithms' accuracy with reference to the true data-generating distribution.

AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司