亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We give practical, efficient algorithms that automatically determine the distributed round complexity of a given locally checkable graph problem, in two settings. We present one algorithm for unrooted regular trees and another algorithm for rooted regular trees. The algorithms take the description of a locally checkable labeling problem as input, and the running time is polynomial in the size of the problem description. The algorithms decide if the problem is solvable in $O(\log n)$ rounds. If not, it is known that the complexity has to be $\Theta(n^{1/k})$ for some $k = 1, 2, \dotsc$, and in this case the algorithms also output the right value of the exponent $k$. In rooted trees in the $O(\log n)$ case we can then further determine the exact complexity class by using algorithms from prior work; for unrooted trees the more fine-grained classification in the $O(\log n)$ region remains an open question.

相關內容

We study complexity classes of local problems on regular trees from the perspective of distributed local algorithms and descriptive combinatorics. We show that, surprisingly, some deterministic local complexity classes from the hierarchy of distributed computing exactly coincide with well studied classes of problems in descriptive combinatorics. Namely, we show that a local problem admits a continuous solution if and only if it admits a local algorithm with local complexity $O(\log^* n)$, and a Baire measurable solution if and only if it admits a local algorithm with local complexity $O(\log n)$.

We describe a polynomial-time algorithm which, given a graph $G$ with treewidth $t$, approximates the pathwidth of $G$ to within a ratio of $O(t\sqrt{\log t})$. This is the first algorithm to achieve an $f(t)$-approximation for some function $f$. Our approach builds on the following key insight: every graph with large pathwidth has large treewidth or contains a subdivision of a large complete binary tree. Specifically, we show that every graph with pathwidth at least $th+2$ has treewidth at least $t$ or contains a subdivision of a complete binary tree of height $h+1$. The bound $th+2$ is best possible up to a multiplicative constant. This result was motivated by, and implies (with $c=2$), the following conjecture of Kawarabayashi and Rossman (SODA'18): there exists a universal constant $c$ such that every graph with pathwidth $\Omega(k^c)$ has treewidth at least $k$ or contains a subdivision of a complete binary tree of height $k$. Our main technical algorithm takes a graph $G$ and some (not necessarily optimal) tree decomposition of $G$ of width $t'$ in the input, and it computes in polynomial time an integer $h$, a certificate that $G$ has pathwidth at least $h$, and a path decomposition of $G$ of width at most $(t'+1)h+1$. The certificate is closely related to (and implies) the existence of a subdivision of a complete binary tree of height $h$. The approximation algorithm for pathwidth is then obtained by combining this algorithm with the approximation algorithm of Feige, Hajiaghayi, and Lee (STOC'05) for treewidth.

Transformers have achieved state-of-the-art results across multiple NLP tasks. However, the self-attention mechanism complexity scales quadratically with the sequence length, creating an obstacle for tasks involving long sequences, like in the speech domain. In this paper, we discuss the usefulness of self-attention for Direct Speech Translation. First, we analyze the layer-wise token contributions in the self-attention of the encoder, unveiling local diagonal patterns. To prove that some attention weights are avoidable, we propose to substitute the standard self-attention with a local efficient one, setting the amount of context used based on the results of the analysis. With this approach, our model matches the baseline performance, and improves the efficiency by skipping the computation of those weights that standard attention discards.

We study the distributed minimum spanning tree (MST) problem, a fundamental problem in distributed computing. It is well-known that distributed MST can be solved in $\tilde{O}(D+\sqrt{n})$ rounds in the standard CONGEST model (where $n$ is the network size and $D$ is the network diameter) and this is essentially the best possible round complexity (up to logarithmic factors). However, in resource-constrained networks such as ad hoc wireless and sensor networks, nodes spending so much time can lead to significant spending of resources such as energy. Motivated by the above consideration, we study distributed algorithms for MST under the \emph{sleeping model} [Chatterjee et al., PODC 2020], a model for design and analysis of resource-efficient distributed algorithms. In the sleeping model, a node can be in one of two modes in any round -- \emph{sleeping} or \emph{awake} (unlike the traditional model where nodes are always awake). Only the rounds in which a node is \emph{awake} are counted, while \emph{sleeping} rounds are ignored. A node spends resources only in the awake rounds and hence the main goal is to minimize the \emph{awake complexity} of a distributed algorithm, the worst-case number of rounds any node is awake. We present deterministic and randomized distributed MST algorithms that have an \emph{optimal} awake complexity of $O(\log n)$ time with a matching lower bound. We also show that our randomized awake-optimal algorithm has essentially the best possible round complexity by presenting a lower bound of $\tilde{\Omega}(n)$ on the product of the awake and round complexity of any distributed algorithm (including randomized) that outputs an MST, where $\tilde{\Omega}$ hides a $1/(\text{polylog } n)$ factor.

Maximal Independent Set (MIS) is one of the central and most well-studied problems in distributed computing. Even after four decades of intensive research, the best-known (randomized) MIS algorithms take $O(\log{n})$ worst-case rounds on general graphs (where $n$ is the number of nodes), while the best-known lower bound is $\Omega\left(\sqrt{\frac{\log{n}}{\log{\log{n}}}}\right)$ rounds. Breaking past the $O(\log{n})$ worst-case bound or showing stronger lower bounds have been longstanding open problems. Our main contribution is that we show that MIS can be computed in (worst-case) awake complexity of $O(\log \log n)$ rounds that is (essentially) exponentially better compared to the (traditional) round complexity lower bound of $\Omega\left(\sqrt{\frac{\log{n}}{\log{\log{n}}}}\right)$. Specifically, we present the following results. (1) We present a randomized distributed (Monte Carlo) algorithm for MIS that with high probability computes an MIS and has $O(\log\log{n})$-rounds awake complexity. This algorithm has (traditional) {\em round complexity} that is $O(poly(n))$. Our bounds hold in the $CONGEST(O(polylog n))$ model where only $O(polylog n)$ (specifically $O(\log^3 n)$) bits are allowed to be sent per edge per round. (2) We also show that we can drastically reduce the round complexity at the cost of a slight increase in awake complexity by presenting a randomized MIS algorithm with $O(\log \log n \log^* n )$ awake complexity and $O(\log^3 n \log \log n \log^*n)$ round complexity in the $CONGEST(O(polylog n))$ model.

Many existing algorithms for streaming geometric data analysis have been plagued by exponential dependencies in the space complexity, which are undesirable for processing high-dimensional data sets. In particular, once $d\geq\log n$, there are no known non-trivial streaming algorithms for problems such as maintaining convex hulls and L\"owner-John ellipsoids of $n$ points, despite a long line of work in streaming computational geometry since [AHV04]. We simultaneously improve these results to $\mathrm{poly}(d,\log n)$ bits of space by trading off with a $\mathrm{poly}(d,\log n)$ factor distortion. We achieve these results in a unified manner, by designing the first streaming algorithm for maintaining a coreset for $\ell_\infty$ subspace embeddings with $\mathrm{poly}(d,\log n)$ space and $\mathrm{poly}(d,\log n)$ distortion. Our algorithm also gives similar guarantees in the \emph{online coreset} model. Along the way, we sharpen results for online numerical linear algebra by replacing a log condition number dependence with a $\log n$ dependence, answering a question of [BDM+20]. Our techniques provide a novel connection between leverage scores, a fundamental object in numerical linear algebra, and computational geometry. For $\ell_p$ subspace embeddings, we give nearly optimal trade-offs between space and distortion for one-pass streaming algorithms. For instance, we give a deterministic coreset using $O(d^2\log n)$ space and $O((d\log n)^{1/2-1/p})$ distortion for $p>2$, whereas previous deterministic algorithms incurred a $\mathrm{poly}(n)$ factor in the space or the distortion [CDW18]. Our techniques have implications in the offline setting, where we give optimal trade-offs between the space complexity and distortion of subspace sketch data structures. To do this, we give an elementary proof of a "change of density" theorem of [LT80] and make it algorithmic.

We introduce a restriction of the classical 2-party deterministic communication protocol where Alice and Bob are restricted to using only comparison functions. We show that the complexity of a function in the model is, up to a constant factor, determined by a complexity measure analogous to Yao's tiling number, which we call the geometric tiling number which can be computed in polynomial time. As a warm-up, we consider an analogous restricted decision tree model and observe a 1-dimensional analog of the above results.

While the theoretical analysis of evolutionary algorithms (EAs) has made significant progress for pseudo-Boolean optimization problems in the last 25 years, only sporadic theoretical results exist on how EAs solve permutation-based problems. To overcome the lack of permutation-based benchmark problems, we propose a general way to transfer the classic pseudo-Boolean benchmarks into benchmarks defined on sets of permutations. We then conduct a rigorous runtime analysis of the permutation-based $(1+1)$ EA proposed by Scharnow, Tinnefeld, and Wegener (2004) on the analogues of the \textsc{LeadingOnes} and \textsc{Jump} benchmarks. The latter shows that, different from bit-strings, it is not only the Hamming distance that determines how difficult it is to mutate a permutation $\sigma$ into another one $\tau$, but also the precise cycle structure of $\sigma \tau^{-1}$. For this reason, we also regard the more symmetric scramble mutation operator. We observe that it not only leads to simpler proofs, but also reduces the runtime on jump functions with odd jump size by a factor of $\Theta(n)$. Finally, we show that a heavy-tailed version of the scramble operator, as in the bit-string case, leads to a speed-up of order $m^{\Theta(m)}$ on jump functions with jump size~$m$.%

Given a matrix $A$ and vector $b$ with polynomial entries in $d$ real variables $\delta=(\delta_1,\ldots,\delta_d)$ we consider the following notion of feasibility: the pair $(A,b)$ is locally feasible if there exists an open neighborhood $U$ of $0$ such that for every $\delta\in U$ there exists $x$ satisfying $A(\delta)x\ge b(\delta)$ entry-wise. For $d=1$ we construct a polynomial time algorithm for deciding local feasibility. For $d \ge 2$ we show local feasibility is NP-hard. As an application (which was the primary motivation for this work) we give a computer-assisted proof of ergodicity of the following elementary 1D cellular automaton: given the current state $\eta_t \in \{0,1\}^{\mathbb{Z}}$ the next state $\eta_{t+1}(n)$ at each vertex $n\in \mathbb{Z}$ is obtained by $\eta_{t+1}(n)= \text{NAND}\big(\text{BSC}_\delta(\eta_t(n-1)), \text{BSC}_\delta(\eta_t(n))\big)$. Here the binary symmetric channel $\text{BSC}_\delta$ takes a bit as input and flips it with probability $\delta$ (and leaves it unchanged with probability $1-\delta$). We also consider the problem of broadcasting information on the 2D-grid of noisy binary-symmetric channels $\text{BSC}_\delta$, where each node may apply an arbitrary processing function to its input bits. We prove that there exists $\delta_0'>0$ such that for all noise levels $0<\delta<\delta_0'$ it is impossible to broadcast information for any processing function, as conjectured in Makur, Mossel, Polyanskiy (ISIT 2021).

It is shown, with two sets of indicators that separately load on two distinct factors, independent of one another conditional on the past, that if it is the case that at least one of the factors causally affects the other, then, in many settings, the process will converge to a factor model in which a single factor will suffice to capture the covariance structure among the indicators. Factor analysis with one wave of data can then not distinguish between factor models with a single factor versus those with two factors that are causally related. Therefore, unless causal relations between factors can be ruled out a priori, alleged empirical evidence from one-wave factor analysis for a single factor still leaves open the possibilities of a single factor or of two factors that causally affect one another. The implications for interpreting the factor structure of psychological scales, such as self-report scales for anxiety and depression, or for happiness and purpose, are discussed. The results are further illustrated through simulations to gain insight into the practical implications of the results in more realistic settings prior to the convergence of the processes. Some further generalizations to an arbitrary number of underlying factors are noted.

北京阿比特科技有限公司