Argument mining aims to detect all possible argumentative components and identify their relationships automatically. As a thriving task in natural language processing, there has been a large amount of corpus for academic study and application development in this field. However, the research in this area is still constrained by the inherent limitations of existing datasets. Specifically, all the publicly available datasets are relatively small in scale, and few of them provide information from other modalities to facilitate the learning process. Moreover, the statements and expressions in these corpora are usually in a compact form, which restricts the generalization ability of models. To this end, we collect a novel dataset AntCritic to serve as a helpful complement to this area, which consists of about 10k free-form and visually-rich financial comments and supports both argument component detection and argument relation prediction tasks. Besides, to cope with the challenges brought by scenario expansion, we thoroughly explore the fine-grained relation prediction and structure reconstruction scheme and discuss the encoding mechanism for visual styles and layouts. On this basis, we design two simple but effective model architectures and conduct various experiments on this dataset to provide benchmark performances as a reference and verify the practicability of our proposed architecture. We release our data and code in this link, and this dataset follows CC BY-NC-ND 4.0 license.
Temporal Action Detection (TAD) focuses on detecting pre-defined actions, while Moment Retrieval (MR) aims to identify the events described by open-ended natural language within untrimmed videos. Despite that they focus on different events, we observe they have a significant connection. For instance, most descriptions in MR involve multiple actions from TAD. In this paper, we aim to investigate the potential synergy between TAD and MR. Firstly, we propose a unified architecture, termed Unified Moment Detection (UniMD), for both TAD and MR. It transforms the inputs of the two tasks, namely actions for TAD or events for MR, into a common embedding space, and utilizes two novel query-dependent decoders to generate a uniform output of classification score and temporal segments. Secondly, we explore the efficacy of two task fusion learning approaches, pre-training and co-training, in order to enhance the mutual benefits between TAD and MR. Extensive experiments demonstrate that the proposed task fusion learning scheme enables the two tasks to help each other and outperform the separately trained counterparts. Impressively, UniMD achieves state-of-the-art results on three paired datasets Ego4D, Charades-STA, and ActivityNet. Our code is available at //github.com/yingsen1/UniMD.
Assessing different material properties to predict specific attributes, such as band gap, resistivity, young modulus, work function, and refractive index, is a fundamental requirement for materials science-based applications. However, the process is time-consuming and often requires extensive literature reviews and numerous experiments. Our study addresses these challenges by leveraging machine learning to analyze material properties with greater precision and efficiency. By automating the data extraction process and using the extracted information to train machine learning models, our developed model, SciQu, optimizes material properties. As a proof of concept, we predicted the refractive index of materials using data extracted from numerous research articles with SciQu, considering input descriptors such as space group, volume, and bandgap with Root Mean Square Error (RMSE) 0.068 and R2 0.94. Thus, SciQu not only predicts the properties of materials but also plays a key role in self-driving laboratories by optimizing the synthesis parameters to achieve precise shape, size, and phase of the materials subjected to the input parameters.
LLMs can help humans working with long documents, but are known to hallucinate. Attribution can increase trust in LLM responses: The LLM provides evidence that supports its response, which enhances verifiability. Existing approaches to attribution have only been evaluated in RAG settings, where the initial retrieval confounds LLM performance. This is crucially different from the long document setting, where retrieval is not needed, but could help. Thus, a long document specific evaluation of attribution is missing. To fill this gap, we present LAB, a benchmark of 6 diverse long document tasks with attribution, and experiment with different approaches to attribution on 4 LLMs of different sizes, both prompted and fine-tuned. We find that citation, i.e. response generation and evidence extraction in one step, mostly performs best. We investigate whether the ``Lost in the Middle'' phenomenon exists for attribution, but do not find this. We also find that evidence quality can predict response quality on datasets with simple responses, but not so for complex responses, as models struggle with providing evidence for complex claims. We release code and data for further investigation.
Explainable Multimodal Emotion Recognition (EMER) is an emerging task that aims to achieve reliable and accurate emotion recognition. However, due to the high annotation cost, the existing dataset (denoted as EMER-Fine) is small, making it difficult to perform supervised training. To reduce the annotation cost and expand the dataset size, this paper reviews the previous dataset construction process. Then, we simplify the annotation pipeline, avoid manual checks, and replace the closed-source models with open-source models. Finally, we build \textbf{EMER-Coarse}, a coarsely-labeled dataset containing large-scale samples. Besides the dataset, we propose a two-stage training framework \textbf{AffectGPT}. The first stage exploits EMER-Coarse to learn a coarse mapping between multimodal inputs and emotion-related descriptions; the second stage uses EMER-Fine to better align with manually-checked results. Experimental results demonstrate the effectiveness of our proposed method on the challenging EMER task. To facilitate further research, we will make the code and dataset available at: //github.com/zeroQiaoba/AffectGPT.
Diplomacy is one of the most sophisticated activities in human society. The complex interactions among multiple parties/ agents involve various abilities like social reasoning, negotiation arts, and long-term strategy planning. Previous AI agents surely have proved their capability of handling multi-step games and larger action spaces on tasks involving multiple agents. However, diplomacy involves a staggering magnitude of decision spaces, especially considering the negotiation stage required. Recently, LLM agents have shown their potential for extending the boundary of previous agents on a couple of applications, however, it is still not enough to handle a very long planning period in a complex multi-agent environment. Empowered with cutting-edge LLM technology, we make the first stab to explore AI's upper bound towards a human-like agent for such a highly comprehensive multi-agent mission by combining three core and essential capabilities for stronger LLM-based societal agents: 1) strategic planner with memory and reflection; 2) goal-oriented negotiate with social reasoning; 3) augmenting memory by self-play games to self-evolving without any human in the loop.
Large language models (LLMs) have revolutionized Natural Language Processing (NLP) by minimizing the need for complex feature engineering. However, the application of LLMs in specialized domains like biopharmaceuticals and chemistry remains largely unexplored. These fields are characterized by intricate terminologies, specialized knowledge, and a high demand for precision areas where general purpose LLMs often fall short. In this study, we introduce PharmaGPT, a suite of domain specilized LLMs with 13 billion and 70 billion parameters, specifically trained on a comprehensive corpus tailored to the Bio-Pharmaceutical and Chemical domains. Our evaluation shows that PharmaGPT surpasses existing general models on specific-domain benchmarks such as NAPLEX, demonstrating its exceptional capability in domain-specific tasks. Remarkably, this performance is achieved with a model that has only a fraction, sometimes just one-tenth-of the parameters of general-purpose large models. This advancement establishes a new benchmark for LLMs in the bio-pharmaceutical and chemical fields, addressing the existing gap in specialized language modeling. It also suggests a promising path for enhanced research and development, paving the way for more precise and effective NLP applications in these areas.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.
Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.
Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.