亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Various iterative eigenvalue solvers have been developed to compute parts of the spectrum for a large sparse matrix, including the power method, Krylov subspace methods, contour integral methods, and preconditioned solvers such as the so called LOBPCG method. All of these solvers rely on random matrices to determine, e.g., starting vectors that have, with high probability, a non-negligible overlap with the eigenvectors of interest. For this purpose, a safe and common choice are unstructured Gaussian random matrices. In this work, we investigate the use of random Khatri-Rao products in eigenvalue solvers. On the one hand, we establish a novel subspace embedding property that provides theoretical justification for the use of such structured random matrices. On the other hand, we highlight the potential algorithmic benefits when solving eigenvalue problems with Kronecker product structure, as they arise frequently from the discretization of eigenvalue problems for differential operators on tensor product domains. In particular, we consider the use of random Khatri-Rao products within a contour integral method and LOBPCG. Numerical experiments indicate that the gains for the contour integral method strongly depend on the ability to efficiently and accurately solve (shifted) matrix equations with low-rank right-hand side. The flexibility of LOBPCG to directly employ preconditioners makes it easier to benefit from Khatri-Rao product structure, at the expense of having less theoretical justification.

相關內容

We posit that data can only be safe to use up to a certain threshold of the data distribution shift, after which control must be relinquished by the autonomous system and operation halted or handed to a human operator. With the use of a computer vision toy example we demonstrate that network predictive accuracy is impacted by data distribution shifts and propose distance metrics between training and testing data to define safe operation limits within said shifts. We conclude that beyond an empirically obtained threshold of the data distribution shift, it is unreasonable to expect network predictive accuracy not to degrade

This contribution introduces a model order reduction approach for an advection-reaction problem with a parametrized reaction function. The underlying discretization uses an ultraweak formulation with an $L^2$-like trial space and an 'optimal' test space as introduced by Demkowicz et al. This ensures the stability of the discretization and in addition allows for a symmetric reformulation of the problem in terms of a dual solution which can also be interpreted as the normal equations of an adjoint least-squares problem. Classic model order reduction techniques can then be applied to the space of dual solutions which also immediately gives a reduced primal space. We show that the necessary computations do not require the reconstruction of any primal solutions and can instead be performed entirely on the space of dual solutions. We prove exponential convergence of the Kolmogorov $N$-width and show that a greedy algorithm produces quasi-optimal approximation spaces for both the primal and the dual solution space. Numerical experiments based on the benchmark problem of a catalytic filter confirm the applicability of the proposed method.

An essential problem in statistics and machine learning is the estimation of expectations involving PDFs with intractable normalizing constants. The self-normalized importance sampling (SNIS) estimator, which normalizes the IS weights, has become the standard approach due to its simplicity. However, the SNIS has been shown to exhibit high variance in challenging estimation problems, e.g, involving rare events or posterior predictive distributions in Bayesian statistics. Further, most of the state-of-the-art adaptive importance sampling (AIS) methods adapt the proposal as if the weights had not been normalized. In this paper, we propose a framework that considers the original task as estimation of a ratio of two integrals. In our new formulation, we obtain samples from a joint proposal distribution in an extended space, with two of its marginals playing the role of proposals used to estimate each integral. Importantly, the framework allows us to induce and control a dependency between both estimators. We propose a construction of the joint proposal that decomposes in two (multivariate) marginals and a coupling. This leads to a two-stage framework suitable to be integrated with existing or new AIS and/or variational inference (VI) algorithms. The marginals are adapted in the first stage, while the coupling can be chosen and adapted in the second stage. We show in several examples the benefits of the proposed methodology, including an application to Bayesian prediction with misspecified models.

In the field of materials science and manufacturing, a vast amount of heterogeneous data exists, encompassing measurement and simulation data, machine data, publications, and more. This data serves as the bedrock of valuable knowledge that can be leveraged for various engineering applications. However, efficiently storing and handling such diverse data remain significantly challenging, often due to the lack of standardization and integration across different organizational units. Addressing these issues is crucial for fully utilizing the potential of data-driven approaches in these fields. In this paper, we present a novel technology stack named Dataspace Management System (DSMS) for powering dataspace solutions. The core of DSMS lies on its distinctive knowledge management approach tuned to meet the specific demands of the materials science and manufacturing domain, all while adhering to the FAIR principles. This includes data integration, linkage, exploration, visualization, processing, and enrichment, in order to support engineers in decision-making and in solving design and optimization problems. We provide an architectural overview and describe the core components of DSMS. Additionally, we demonstrate the applicability of DSMS to typical data processing tasks in materials science through use cases from two research projects, namely StahlDigital and KupferDigital, both part of the German MaterialDigital initiative.

In the Bayesian framework power prior distributions are increasingly adopted in clinical trials and similar studies to incorporate external and past information, typically to inform the parameter associated to a treatment effect. Their use is particularly effective in scenarios with small sample sizes and where robust prior information is actually available. A crucial component of this methodology is represented by its weight parameter, which controls the volume of historical information incorporated into the current analysis. This parameter can be considered as either fixed or random. Although various strategies exist for its determination, eliciting the prior distribution of the weight parameter according to a full Bayesian approach remains a challenge. In general, this parameter should be carefully selected to accurately reflect the available prior information without dominating the posterior inferential conclusions. To this aim, we propose a novel method for eliciting the prior distribution of the weight parameter through a simulation-based calibrated Bayes factor procedure. This approach allows for the prior distribution to be updated based on the strength of evidence provided by the data: The goal is to facilitate the integration of historical data when it aligns with current information and to limit it when discrepancies arise in terms, for instance, of prior-data conflicts. The performance of the proposed method is tested through simulation studies and applied to real data from clinical trials.

The partial information decomposition (PID) aims to quantify the amount of redundant information that a set of sources provides about a target. Here, we show that this goal can be formulated as a type of information bottleneck (IB) problem, termed the "redundancy bottleneck" (RB). The RB formalizes a tradeoff between prediction and compression: it extracts information from the sources that best predict the target, without revealing which source provided the information. It can be understood as a generalization of "Blackwell redundancy", which we previously proposed as a principled measure of PID redundancy. The "RB curve" quantifies the prediction--compression tradeoff at multiple scales. This curve can also be quantified for individual sources, allowing subsets of redundant sources to be identified without combinatorial optimization. We provide an efficient iterative algorithm for computing the RB curve.

High-order implicit shock tracking (fitting) is a class of high-order numerical methods that use numerical optimization to simultaneously compute a high-order approximation to a conservation law solution and align elements of the computational mesh with non-smooth features. This alignment ensures that non-smooth features are perfectly represented by inter-element jumps and high-order basis functions approximate smooth regions of the solution without nonlinear stabilization, which leads to accurate approximations on traditionally coarse meshes. In this work, we devise a family of preconditioners for the saddle point linear system that defines the step toward optimality at each iteration of the optimization solver so Krylov solvers can be effectively used. Our preconditioners integrate standard preconditioners from constrained optimization with popular preconditioners for discontinuous Galerkin discretizations such as block Jacobi, block incomplete LU factorizations with minimum discarded fill reordering, and p-multigrid. Thorough studies are performed using two inviscid compressible flow problems to evaluate the effectivity of each preconditioner in this family and their sensitivity to critical shock tracking parameters such as the mesh and Hessian regularization, linearization state, and resolution of the solution space.

A non-linear complex system governed by multi-spatial and multi-temporal physics scales cannot be fully understood with a single diagnostic, as each provides only a partial view and much information is lost during data extraction. Combining multiple diagnostics also results in imperfect projections of the system's physics. By identifying hidden inter-correlations between diagnostics, we can leverage mutual support to fill in these gaps, but uncovering these inter-correlations analytically is too complex. We introduce a groundbreaking machine learning methodology to address this issue. Our multimodal approach generates super resolution data encompassing multiple physics phenomena, capturing detailed structural evolution and responses to perturbations previously unobservable. This methodology addresses a critical problem in fusion plasmas: the Edge Localized Mode (ELM), a plasma instability that can severely damage reactor walls. One method to stabilize ELM is using resonant magnetic perturbation to trigger magnetic islands. However, low spatial and temporal resolution of measurements limits the analysis of these magnetic islands due to their small size, rapid dynamics, and complex interactions within the plasma. With super-resolution diagnostics, we can experimentally verify theoretical models of magnetic islands for the first time, providing unprecedented insights into their role in ELM stabilization. This advancement aids in developing effective ELM suppression strategies for future fusion reactors like ITER and has broader applications, potentially revolutionizing diagnostics in fields such as astronomy, astrophysics, and medical imaging.

This research presents a comprehensive approach to predicting the duration of traffic incidents and classifying them as short-term or long-term across the Sydney Metropolitan Area. Leveraging a dataset that encompasses detailed records of traffic incidents, road network characteristics, and socio-economic indicators, we train and evaluate a variety of advanced machine learning models including Gradient Boosted Decision Trees (GBDT), Random Forest, LightGBM, and XGBoost. The models are assessed using Root Mean Square Error (RMSE) for regression tasks and F1 score for classification tasks. Our experimental results demonstrate that XGBoost and LightGBM outperform conventional models with XGBoost achieving the lowest RMSE of 33.7 for predicting incident duration and highest classification F1 score of 0.62 for a 30-minute duration threshold. For classification, the 30-minute threshold balances performance with 70.84\% short-term duration classification accuracy and 62.72\% long-term duration classification accuracy. Feature importance analysis, employing both tree split counts and SHAP values, identifies the number of affected lanes, traffic volume, and types of primary and secondary vehicles as the most influential features. The proposed methodology not only achieves high predictive accuracy but also provides stakeholders with vital insights into factors contributing to incident durations. These insights enable more informed decision-making for traffic management and response strategies. The code is available by the link: //github.com/Future-Mobility-Lab/SydneyIncidents

Practical parameter identifiability in ODE-based epidemiological models is a known issue, yet one that merits further study. It is essentially ubiquitous due to noise and errors in real data. In this study, to avoid uncertainty stemming from data of unknown quality, simulated data with added noise are used to investigate practical identifiability in two distinct epidemiological models. Particular emphasis is placed on the role of initial conditions, which are assumed unknown, except those that are directly measured. Instead of just focusing on one method of estimation, we use and compare results from various broadly used methods, including maximum likelihood and Markov Chain Monte Carlo (MCMC) estimation. Among other findings, our analysis revealed that the MCMC estimator is overall more robust than the point estimators considered. Its estimates and predictions are improved when the initial conditions of certain compartments are fixed so that the model becomes globally identifiable. For the point estimators, whether fixing or fitting the that are not directly measured improves parameter estimates is model-dependent. Specifically, in the standard SEIR model, fixing the initial condition for the susceptible population S(0) improved parameter estimates, while this was not true when fixing the initial condition of the asymptomatic population in a more involved model. Our study corroborates the change in quality of parameter estimates upon usage of pre-peak or post-peak time-series under consideration. Finally, our examples suggest that in the presence of significantly noisy data, the value of structural identifiability is moot.

北京阿比特科技有限公司