We deal with a normal form for context-free grammars, called Dyck normal form. This normal form is a syntactical restriction of the Chomsky normal form, in which the two nonterminals occurring on the right-hand side of a rule are paired nonterminals. This pairwise property, along with several other terminal rewriting conditions, makes it possible to define a homomorphism from Dyck words to words generated by a grammar in Dyck normal form. We prove that for each context-free language L, there exist an integer K and a homomorphism phi such that L=phi(D'_K), where D'_K is a subset of D_K and D_K is the one-sided Dyck language over K letters. As an application we give an alternative proof of the inclusion of the class of even linear languages in AC1.
Diffusion models, which convert noise into new data instances by learning to reverse a Markov diffusion process, have become a cornerstone in contemporary generative modeling. While their practical power has now been widely recognized, the theoretical underpinnings remain far from mature. In this work, we develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models in discrete time, assuming access to $\ell_2$-accurate estimates of the (Stein) score functions. For a popular deterministic sampler (based on the probability flow ODE), we establish a convergence rate proportional to $1/T$ (with $T$ the total number of steps), improving upon past results; for another mainstream stochastic sampler (i.e., a type of the denoising diffusion probabilistic model), we derive a convergence rate proportional to $1/\sqrt{T}$, matching the state-of-the-art theory. Imposing only minimal assumptions on the target data distribution (e.g., no smoothness assumption is imposed), our results characterize how $\ell_2$ score estimation errors affect the quality of the data generation processes. In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach without resorting to toolboxes for SDEs and ODEs. Further, we design two accelerated variants, improving the convergence to $1/T^2$ for the ODE-based sampler and $1/T$ for the DDPM-type sampler, which might be of independent theoretical and empirical interest.
Graph is a fundamental mathematical structure in characterizing relations between different objects and has been widely used on various learning tasks. Most methods implicitly assume a given graph to be accurate and complete. However, real data is inevitably noisy and sparse, which will lead to inferior results. Despite the remarkable success of recent graph representation learning methods, they inherently presume that the graph is homophilic, and largely overlook heterophily, where most connected nodes are from different classes. In this regard, we propose a novel robust graph structure learning method to achieve a high-quality graph from heterophilic data for downstream tasks. We first apply a high-pass filter to make each node more distinctive from its neighbors by encoding structure information into the node features. Then, we learn a robust graph with an adaptive norm characterizing different levels of noise. Afterwards, we propose a novel regularizer to further refine the graph structure. Clustering and semi-supervised classification experiments on heterophilic graphs verify the effectiveness of our method.
Stain normalisation is thought to be a crucial preprocessing step in computational pathology pipelines. We question this belief in the context of weakly supervised whole slide image classification, motivated by the emergence of powerful feature extractors trained using self-supervised learning on diverse pathology datasets. To this end, we performed the most comprehensive evaluation of publicly available pathology feature extractors to date, involving more than 8,000 training runs across nine tasks, five datasets, three downstream architectures, and various preprocessing setups. Notably, we find that omitting stain normalisation and image augmentations does not compromise downstream slide-level classification performance, while incurring substantial savings in memory and compute. Using a new evaluation metric that facilitates relative downstream performance comparison, we identify the best publicly available extractors, and show that their latent spaces are remarkably robust to variations in stain and augmentations like rotation. Contrary to previous patch-level benchmarking studies, our approach emphasises clinical relevance by focusing on slide-level biomarker prediction tasks in a weakly supervised setting with external validation cohorts. Our findings stand to streamline digital pathology workflows by minimising preprocessing needs and informing the selection of feature extractors. Code and data are available at //georg.woelflein.eu/good-features.
Handwritten mathematical expression recognition (HMER) is challenging in image-to-text tasks due to the complex layouts of mathematical expressions and suffers from problems including over-parsing and under-parsing. To solve these, previous HMER methods improve the attention mechanism by utilizing historical alignment information. However, this approach has limitations in addressing under-parsing since it cannot correct the erroneous attention on image areas that should be parsed at subsequent decoding steps. This faulty attention causes the attention module to incorporate future context into the current decoding step, thereby confusing the alignment process. To address this issue, we propose an attention guidance mechanism to explicitly suppress attention weights in irrelevant areas and enhance the appropriate ones, thereby inhibiting access to information outside the intended context. Depending on the type of attention guidance, we devise two complementary approaches to refine attention weights: self-guidance that coordinates attention of multiple heads and neighbor-guidance that integrates attention from adjacent time steps. Experiments show that our method outperforms existing state-of-the-art methods, achieving expression recognition rates of 60.75% / 61.81% / 63.30% on the CROHME 2014/ 2016/ 2019 datasets.
Sequential design of experiments for optimizing a reward function in causal systems can be effectively modeled by the sequential design of interventions in causal bandits (CBs). In the existing literature on CBs, a critical assumption is that the causal models remain constant over time. However, this assumption does not necessarily hold in complex systems, which constantly undergo temporal model fluctuations. This paper addresses the robustness of CBs to such model fluctuations. The focus is on causal systems with linear structural equation models (SEMs). The SEMs and the time-varying pre- and post-interventional statistical models are all unknown. Cumulative regret is adopted as the design criteria, based on which the objective is to design a sequence of interventions that incur the smallest cumulative regret with respect to an oracle aware of the entire causal model and its fluctuations. First, it is established that the existing approaches fail to maintain regret sub-linearity with even a few instances of model deviation. Specifically, when the number of instances with model deviation is as few as $T^\frac{1}{2L}$, where $T$ is the time horizon and $L$ is the longest causal path in the graph, the existing algorithms will have linear regret in $T$. Next, a robust CB algorithm is designed, and its regret is analyzed, where upper and information-theoretic lower bounds on the regret are established. Specifically, in a graph with $N$ nodes and maximum degree $d$, under a general measure of model deviation $C$, the cumulative regret is upper bounded by $\tilde{\mathcal{O}}(d^{L-\frac{1}{2}}(\sqrt{NT} + NC))$ and lower bounded by $\Omega(d^{\frac{L}{2}-2}\max\{\sqrt{T},d^2C\})$. Comparing these bounds establishes that the proposed algorithm achieves nearly optimal $\tilde{\mathcal{O}}(\sqrt{T})$ regret when $C$ is $o(\sqrt{T})$ and maintains sub-linear regret for a broader range of $C$.
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.
Script event prediction requires a model to predict the subsequent event given an existing event context. Previous models based on event pairs or event chains cannot make full use of dense event connections, which may limit their capability of event prediction. To remedy this, we propose constructing an event graph to better utilize the event network information for script event prediction. In particular, we first extract narrative event chains from large quantities of news corpus, and then construct a narrative event evolutionary graph (NEEG) based on the extracted chains. NEEG can be seen as a knowledge base that describes event evolutionary principles and patterns. To solve the inference problem on NEEG, we present a scaled graph neural network (SGNN) to model event interactions and learn better event representations. Instead of computing the representations on the whole graph, SGNN processes only the concerned nodes each time, which makes our model feasible to large-scale graphs. By comparing the similarity between input context event representations and candidate event representations, we can choose the most reasonable subsequent event. Experimental results on widely used New York Times corpus demonstrate that our model significantly outperforms state-of-the-art baseline methods, by using standard multiple choice narrative cloze evaluation.
Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amount of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. In this work, we propose to reason over knowledge base embeddings for explainable recommendation. Specifically, we propose a knowledge base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.
Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.