亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Scene Graph Generation (SGG) aims to extract <subject, predicate, object> relationships in images for vision understanding. Although recent works have made steady progress on SGG, they still suffer long-tail distribution issues that tail-predicates are more costly to train and hard to distinguish due to a small amount of annotated data compared to frequent predicates. Existing re-balancing strategies try to haddle it via prior rules but are still confined to pre-defined conditions, which are not scalable for various models and datasets. In this paper, we propose a Cross-modal prediCate boosting (CaCao) framework, where a visually-prompted language model is learned to generate diverse fine-grained predicates in a low-resource way. The proposed CaCao can be applied in a plug-and-play fashion and automatically strengthen existing SGG to tackle the long-tailed problem. Based on that, we further introduce a novel Entangled cross-modal prompt approach for open-world predicate scene graph generation (Epic), where models can generalize to unseen predicates in a zero-shot manner. Comprehensive experiments on three benchmark datasets show that CaCao consistently boosts the performance of multiple scene graph generation models in a model-agnostic way. Moreover, our Epic achieves competitive performance on open-world predicate prediction.

相關內容

Foundation models have made significant strides in 2D and language tasks such as image segmentation, object detection, and visual-language understanding. Nevertheless, their potential to enhance 3D scene representation learning remains largely untapped due to the domain gap. In this paper, we propose an innovative methodology Bridge3D to address this gap, pre-training 3D models using features, semantic masks, and captions sourced from foundation models. Specifically, our approach utilizes semantic masks from these models to guide the masking and reconstruction process in the masked autoencoder. This strategy enables the network to concentrate more on foreground objects, thereby enhancing 3D representation learning. Additionally, we bridge the 3D-text gap at the scene level by harnessing image captioning foundation models. To further facilitate knowledge distillation from well-learned 2D and text representations to the 3D model, we introduce a novel method that employs foundation models to generate highly accurate object-level masks and semantic text information at the object level. Our approach notably outshines state-of-the-art methods in 3D object detection and semantic segmentation tasks. For instance, on the ScanNet dataset, our method surpasses the previous state-of-the-art method, PiMAE, by a significant margin of 5.3%.

Dynamic scene graphs generated from video clips could help enhance the semantic visual understanding in a wide range of challenging tasks such as environmental perception, autonomous navigation, and task planning of self-driving vehicles and mobile robots. In the process of temporal and spatial modeling during dynamic scene graph generation, it is particularly intractable to learn time-variant relations in dynamic scene graphs among frames. In this paper, we propose a Time-variant Relation-aware TRansformer (TR$^2$), which aims to model the temporal change of relations in dynamic scene graphs. Explicitly, we leverage the difference of text embeddings of prompted sentences about relation labels as the supervision signal for relations. In this way, cross-modality feature guidance is realized for the learning of time-variant relations. Implicitly, we design a relation feature fusion module with a transformer and an additional message token that describes the difference between adjacent frames. Extensive experiments on the Action Genome dataset prove that our TR$^2$ can effectively model the time-variant relations. TR$^2$ significantly outperforms previous state-of-the-art methods under two different settings by 2.1% and 2.6% respectively.

Despite the remarkable success of large-scale Language Models (LLMs) such as GPT-3, their performances still significantly underperform fine-tuned models in the task of text classification. This is due to (1) the lack of reasoning ability in addressing complex linguistic phenomena (e.g., intensification, contrast, irony etc); (2) limited number of tokens allowed in in-context learning. In this paper, we introduce \textbf{C}lue \textbf{A}nd \textbf{R}easoning \textbf{P}rompting (CARP). CARP adopts a progressive reasoning strategy tailored to addressing the complex linguistic phenomena involved in text classification: CARP first prompts LLMs to find superficial clues (e.g., keywords, tones, semantic relations, references, etc), based on which a diagnostic reasoning process is induced for final decisions. To further address the limited-token issue, CARP uses a fine-tuned model on the supervised dataset for $k$NN demonstration search in the in-context learning, allowing the model to take the advantage of both LLM's generalization ability and the task-specific evidence provided by the full labeled dataset. Remarkably, CARP yields new SOTA performances on 4 out of 5 widely-used text-classification benchmarks, 97.39 (+1.24) on SST-2, 96.40 (+0.72) on AGNews, 98.78 (+0.25) on R8 and 96.95 (+0.6) on R52, and a performance comparable to SOTA on MR (92.39 v.s. 93.3). More importantly, we find that CARP delivers impressive abilities on low-resource and domain-adaptation setups. Specifically, Specifically, using 16 examples per class, CARP achieves comparable performances to supervised models with 1,024 examples per class.

In recent years, the use of expressive surface visualizations in the representation of vascular structures has gained significant attention. These visualizations provide a comprehensive understanding of complex anatomical structures and are crucial for treatment planning and medical education. However, to aid decision-making, physicians require visualizations that accurately depict anatomical structures and their spatial relationships in a clear and well-perceivable manner. This work extends a previous paper and presents a thorough examination of common techniques for encoding distance information of 3D vessel surfaces and provides an implementation of these visualizations. A Unity environment and detailed implementation instructions for sixteen different visualizations are provided. These visualizations can be classified into four categories: fundamental, surface-based, auxiliary, and illustrative. Furthermore, this extension includes tools to generate endpoint locations for vascular models. Overall this framework serves as a valuable resource for researchers in the field of vascular surface visualization by reducing the barrier to entry and promoting further research in this area. By providing an implementation of various visualizations, this paper aims to aid in the development of accurate and effective visual representations of vascular structures to assist in treatment planning and medical education.

Lifelong learning (LL) is an important ability for NLP models to learn new tasks continuously. Architecture-based approaches are reported to be effective implementations for LL models. However, it is non-trivial to extend previous approaches to domain incremental LL scenarios since they either require access to task identities in the testing phase or cannot handle samples from unseen tasks. In this paper, we propose \textbf{Diana}: a \underline{d}ynam\underline{i}c \underline{a}rchitecture-based lifelo\underline{n}g le\underline{a}rning model that tries to learn a sequence of tasks with a prompt-enhanced language model. Four types of hierarchically organized prompts are used in Diana to capture knowledge from different granularities. Specifically, we dedicate task-level prompts to capture task-specific knowledge to retain high LL performances and maintain instance-level prompts to learn knowledge shared across input samples to improve the model's generalization performance. Moreover, we dedicate separate prompts to explicitly model unseen tasks and introduce a set of prompt key vectors to facilitate knowledge sharing between tasks. Extensive experiments demonstrate that Diana outperforms state-of-the-art LL models, especially in handling unseen tasks. We release the code and data at \url{//github.com/AlibabaResearch/DAMO-ConvAI/tree/main/diana}.

Prompt tuning provides an efficient way for users to customize Large Language Models (LLMs) with their private data in the emerging LLM service scenario. However, the sensitive nature of private data brings the need for privacy preservation in LLM service customization. Based on prompt tuning, we propose Privacy-Preserving Prompt Tuning (RAPT), a framework that provides privacy guarantees for LLM services. \textsc{rapt} adopts a local privacy setting, allowing users to privatize their data locally with local differential privacy. As prompt tuning performs poorly when directly trained on privatized data, we introduce a novel privatized token reconstruction task that is trained jointly with the downstream task, allowing LLMs to learn better task-dependent representations. Despite the simplicity of our framework, experiments show that RAPT achieves competitive performance across tasks while providing privacy guarantees against adversaries.

The capabilities of text generators have grown with the rapid development of Large Language Models (LLM). To prevent potential misuse, the ability to detect whether texts are produced by LLM has become increasingly important. Several related works have attempted to solve this problem using binary classifiers that categorize input text as human-written or LLM-generated. However, these classifiers have been shown to be unreliable. As impactful decisions could be made based on the result of the classification, the text source detection needs to be high-quality. To this end, this paper presents DeepTextMark, a deep learning-based text watermarking method for text source detection. Applying Word2Vec and Sentence Encoding for watermark insertion and a transformer-based classifier for watermark detection, DeepTextMark achieves blindness, robustness, imperceptibility, and reliability simultaneously. As discussed further in the paper, these traits are indispensable for generic text source detection, and the application focus of this paper is on the text generated by LLM. DeepTextMark can be implemented as an "add-on" to existing text generation systems. That is, the method does not require access or modification to the text generation technique. Experiments have shown high imperceptibility, high detection accuracy, enhanced robustness, reliability, and fast running speed of DeepTextMark.

This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.

We propose a knowledge-enhanced approach, ERNIE-ViL, to learn joint representations of vision and language. ERNIE-ViL tries to construct the detailed semantic connections (objects, attributes of objects and relationships between objects in visual scenes) across vision and language, which are essential to vision-language cross-modal tasks. Incorporating knowledge from scene graphs, ERNIE-ViL constructs Scene Graph Prediction tasks, i.e., Object Prediction, Attribute Prediction and Relationship Prediction in the pre-training phase. More specifically, these prediction tasks are implemented by predicting nodes of different types in the scene graph parsed from the sentence. Thus, ERNIE-ViL can model the joint representation characterizing the alignments of the detailed semantics across vision and language. Pre-trained on two large image-text alignment datasets (Conceptual Captions and SBU), ERNIE-ViL learns better and more robust joint representations. It achieves state-of-the-art performance on 5 vision-language downstream tasks after fine-tuning ERNIE-ViL. Furthermore, it ranked the 1st place on the VCR leader-board with an absolute improvement of 3.7%.

As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.

北京阿比特科技有限公司