亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A powerful statistical interpolating concept, which we call \emph{fully lifted} (fl), is introduced and presented while establishing a connection between bilinearly indexed random processes and their corresponding fully decoupled (linearly indexed) comparative alternatives. Despite on occasion very involved technical considerations, the final interpolating forms and their underlying relations admit rather elegant expressions that provide conceivably highly desirable and useful tool for further studying various different aspects of random processes and their applications. We also discuss the generality of the considered models and show that they encompass many well known random structures and optimization problems to which then the obtained results automatically apply.

相關內容

Processing 是(shi)一門(men)開源編程語言和(he)(he)與之(zhi)配套的集成開發環境(IDE)的名稱。Processing 在電子(zi)藝(yi)術(shu)和(he)(he)視(shi)覺(jue)設計社區被用來教(jiao)授編程基礎,并運用于大量的新媒體和(he)(he)互動藝(yi)術(shu)作品中。

We consider Maxwell eigenvalue problems on uncertain shapes with perfectly conducting TESLA cavities being the driving example. Due to the shape uncertainty, the resulting eigenvalues and eigenmodes are also uncertain and it is well known that the eigenvalues may exhibit crossings or bifurcations under perturbation. We discuss how the shape uncertainties can be modelled using the domain mapping approach and how the deformation mapping can be expressed as coefficients in Maxwell's equations. Using derivatives of these coefficients and derivatives of the eigenpairs, we follow a perturbation approach to compute approximations of mean and covariance of the eigenpairs. For small perturbations, these approximations are faster and more accurate than Monte Carlo or similar sampling-based strategies. Numerical experiments for a three-dimensional 9-cell TESLA cavity are presented.

Barrier functions are crucial for maintaining an intersection and inversion free simulation trajectory but existing methods which directly use distance can restrict implementation design and performance. We present an approach to rewriting the barrier function for arriving at an efficient and robust approximation of its Hessian. The key idea is to formulate a simplicial geometric measure of contact using mesh boundary elements, from which analytic eigensystems are derived and enhanced with filtering and stiffening terms that ensure robustness with respect to the convergence of a Project-Newton solver. A further advantage of our rewriting of the barrier function is that it naturally caters to the notorious case of nearly-parallel edge-edge contacts for which we also present a novel analytic eigensystem. Our approach is thus well suited for standard second order unconstrained optimization strategies for resolving contacts, minimizing nonlinear nonconvex functions where the Hessian may be indefinite. The efficiency of our eigensystems alone yields a 3x speedup over the standard IPC barrier formulation. We further apply our analytic proxy eigensystems to produce an entirely GPU-based implementation of IPC with significant further acceleration.

We give a lower bound of $\Omega(\sqrt n)$ on the unambiguous randomised parity-query complexity of the approximate majority problem -- that is, on the lowest randomised parity-query complexity of any function over $\{0,1\}^n$ whose value is "0" if the Hamming weight of the input is at most n/3, is "1" if the weight is at least 2n/3, and may be arbitrary otherwise.

Comparisons of frequency distributions often invoke the concept of shift to describe directional changes in properties such as the mean. In the present study, we sought to define shift as a property in and of itself. Specifically, we define distributional shift (DS) as the concentration of frequencies away from the discrete class having the greatest value (e.g., the right-most bin of a histogram). We derive a measure of DS using the normalized sum of exponentiated cumulative frequencies. We then define relative distributional shift (RDS) as the difference in DS between two distributions, revealing the magnitude and direction by which one distribution is concentrated to lesser or greater discrete classes relative to another. We find that RDS is highly related to popular measures that, while based on the comparison of frequency distributions, do not explicitly consider shift. While RDS provides a useful complement to other comparative measures, DS allows shift to be quantified as a property of individual distributions, similar in concept to a statistical moment.

In this paper, we consider a numerical method for the multi-term Caputo-Fabrizio time-fractional diffusion equations (with orders $\alpha_i\in(0,1)$, $i=1,2,\cdots,n$). The proposed method employs a fast finite difference scheme to approximate multi-term fractional derivatives in time, requiring only $O(1)$ storage and $O(N_T)$ computational complexity, where $N_T$ denotes the total number of time steps. Then we use a Legendre spectral collocation method for spatial discretization. The stability and convergence of the scheme have been thoroughly discussed and rigorously established. We demonstrate that the proposed scheme is unconditionally stable and convergent with an order of $O(\left(\Delta t\right)^{2}+N^{-m})$, where $\Delta t$, $N$, and $m$ represent the timestep size, polynomial degree, and regularity in the spatial variable of the exact solution, respectively. Numerical results are presented to validate the theoretical predictions.

Multivariate spatio-temporal models are widely applicable, but specifying their structure is complicated and may inhibit wider use. We introduce the R package tinyVAST from two viewpoints: the software user and the statistician. From the user viewpoint, tinyVAST adapts a widely used formula interface to specify generalized additive models, and combines this with arguments to specify spatial and spatio-temporal interactions among variables. These interactions are specified using arrow notation (from structural equation models), or an extended arrow-and-lag notation that allows simultaneous, lagged, and recursive dependencies among variables over time. The user also specifies a spatial domain for areal (gridded), continuous (point-count), or stream-network data. From the statistician viewpoint, tinyVAST constructs sparse precision matrices representing multivariate spatio-temporal variation, and parameters are estimated by specifying a generalized linear mixed model (GLMM). This expressive interface encompasses vector autoregressive, empirical orthogonal functions, spatial factor analysis, and ARIMA models. To demonstrate, we fit to data from two survey platforms sampling corals, sponges, rockfishes, and flatfishes in the Gulf of Alaska and Aleutian Islands. We then compare eight alternative model structures using different assumptions about habitat drivers and survey detectability. Model selection suggests that towed-camera and bottom trawl gears have spatial variation in detectability but sample the same underlying density of flatfishes and rockfishes, and that rockfishes are positively associated with sponges while flatfishes are negatively associated with corals. We conclude that tinyVAST can be used to test complicated dependencies representing alternative structural assumptions for research and real-world policy evaluation.

The proximal gradient method is a generic technique introduced to tackle the non-smoothness in optimization problems, wherein the objective function is expressed as the sum of a differentiable convex part and a non-differentiable regularization term. Such problems with tensor format are of interest in many fields of applied mathematics such as image and video processing. Our goal in this paper is to address the solution of such problems with a more general form of the regularization term. An adapted iterative proximal gradient method is introduced for this purpose. Due to the slowness of the proposed algorithm, we use new tensor extrapolation methods to enhance its convergence. Numerical experiments on color image deblurring are conducted to illustrate the efficiency of our approach.

We generalize the Poisson limit theorem to binary functions of random objects whose law is invariant under the action of an amenable group. Examples include stationary random fields, exchangeable sequences, and exchangeable graphs. A celebrated result of E. Lindenstrauss shows that normalized sums over certain increasing subsets of such groups approximate expectations. Our results clarify that the corresponding unnormalized sums of binary statistics are asymptotically Poisson, provided suitable mixing conditions hold. They extend further to randomly subsampled sums and also show that strict invariance of the distribution is not needed if the requisite mixing condition defined by the group holds. We illustrate the results with applications to random fields, Cayley graphs, and Poisson processes on groups.

Given $n$ copies of an unknown quantum state $\rho\in\mathbb{C}^{d\times d}$, quantum state certification is the task of determining whether $\rho=\rho_0$ or $\|\rho-\rho_0\|_1>\varepsilon$, where $\rho_0$ is a known reference state. We study quantum state certification using unentangled quantum measurements, namely measurements which operate only on one copy of $\rho$ at a time. When there is a common source of shared randomness available and the unentangled measurements are chosen based on this randomness, prior work has shown that $\Theta(d^{3/2}/\varepsilon^2)$ copies are necessary and sufficient. This holds even when the measurements are allowed to be chosen adaptively. We consider deterministic measurement schemes (as opposed to randomized) and demonstrate that ${\Theta}(d^2/\varepsilon^2)$ copies are necessary and sufficient for state certification. This shows a separation between algorithms with and without shared randomness. We develop a unified lower bound framework for both fixed and randomized measurements, under the same theoretical framework that relates the hardness of testing to the well-established L\"uders rule. More precisely, we obtain lower bounds for randomized and fixed schemes as a function of the eigenvalues of the L\"uders channel which characterizes one possible post-measurement state transformation.

The structured $\varepsilon$-stability radius is introduced as a quantity to assess the robustness of transient bounds of solutions to linear differential equations under structured perturbations of the matrix. This applies to general linear structures such as complex or real matrices with a given sparsity pattern or with restricted range and corange, or special classes such as Toeplitz matrices. The notion conceptually combines unstructured and structured pseudospectra in a joint pseudospectrum, allowing for the use of resolvent bounds as with unstructured pseudospectra and for structured perturbations as with structured pseudospectra. We propose and study an algorithm for computing the structured $\varepsilon$-stability radius. This algorithm solves eigenvalue optimization problems via suitably discretized rank-1 matrix differential equations that originate from a gradient system. The proposed algorithm has essentially the same computational cost as the known rank-1 algorithms for computing unstructured and structured stability radii. Numerical experiments illustrate the behavior of the algorithm.

北京阿比特科技有限公司