Generalized linear mixed models (GLMMs) are a widely used tool in statistical analysis. The main bottleneck of many computational approaches lies in the inversion of the high dimensional precision matrices associated with the random effects. Such matrices are typically sparse; however, the sparsity pattern resembles a multi partite random graph, which does not lend itself well to default sparse linear algebra techniques. Notably, we show that, for typical GLMMs, the Cholesky factor is dense even when the original precision is sparse. We thus turn to approximate iterative techniques, in particular to the conjugate gradient (CG) method. We combine a detailed analysis of the spectrum of said precision matrices with results from random graph theory to show that CG-based methods applied to high-dimensional GLMMs typically achieve a fixed approximation error with a total cost that scales linearly with the number of parameters and observations. Numerical illustrations with both real and simulated data confirm the theoretical findings, while at the same time illustrating situations, such as nested structures, where CG-based methods struggle.
We present and analyze a variational front-tracking method for a sharp-interface model of multiphase flow. The fluid interfaces between different phases are represented by curve networks in two space dimensions (2d) or surface clusters in three space dimensions (3d) with triple junctions where three interfaces meet, and boundary points/lines where an interface meets a fixed planar boundary. The model is described by the incompressible Navier--Stokes equations in the bulk domains, with classical interface conditions on the fluid interfaces, and appropriate boundary conditions at the triple junctions and boundary points/lines. We propose a weak formulation for the model, which combines a parametric formulation for the evolving interfaces and an Eulerian formulation for the bulk equations. We employ an unfitted discretization of the coupled formulation to obtain a fully discrete finite element method, where the existence and uniqueness of solutions can be shown under weak assumptions. The constructed method admits an unconditional stability result in terms of the discrete energy. Furthermore, we adapt the introduced method so that an exact volume preservation for each phase can be achieved for the discrete solutions. Numerical examples for three-phase flow and four-phase flow are presented to show the robustness and accuracy of the introduced methods.
This paper introduces fast R updating algorithms designed for statistical applications, including regression, filtering, and model selection, where data structures change frequently. Although traditional QR decomposition is essential for matrix operations, it becomes computationally intensive when dynamically updating the design matrix in statistical models. The proposed algorithms efficiently update the R matrix without recalculating Q, significantly reducing computational costs. These algorithms provide a scalable solution for high-dimensional regression models, enhancing the feasibility of large-scale statistical analyses and model selection in data-intensive fields. Comprehensive simulation studies and real-world data applications reveal that the methods significantly reduce computational time while preserving accuracy. An extensive discussion highlights the versatility of fast R updating algorithms, illustrating their benefits across a wide range of models and applications in statistics and machine learning.
Gradient boosting for decision tree algorithms are increasingly used in actuarial applications as they show superior predictive performance over traditional generalized linear models. Many improvements and sophistications to the first gradient boosting machine algorithm exist. We present in a unified notation, and contrast, all the existing point and probabilistic gradient boosting for decision tree algorithms: GBM, XGBoost, DART, LightGBM, CatBoost, EGBM, PGBM, XGBoostLSS, cyclic GBM, and NGBoost. In this comprehensive numerical study, we compare their performance on five publicly available datasets for claim frequency and severity, of various size and comprising different number of (high cardinality) categorical variables. We explain how varying exposure-to-risk can be handled with boosting in frequency models. We compare the algorithms on the basis of computational efficiency, predictive performance, and model adequacy. LightGBM and XGBoostLSS win in terms of computational efficiency. The fully interpretable EGBM achieves competitive predictive performance compared to the black box algorithms considered. We find that there is no trade-off between model adequacy and predictive accuracy: both are achievable simultaneously.
We study nonconvex optimization in high dimensions through Langevin dynamics, focusing on the multi-spiked tensor PCA problem. This tensor estimation problem involves recovering $r$ hidden signal vectors (spikes) from noisy Gaussian tensor observations using maximum likelihood estimation. We study the number of samples required for Langevin dynamics to efficiently recover the spikes and determine the necessary separation condition on the signal-to-noise ratios (SNRs) for exact recovery, distinguishing the cases $p \ge 3$ and $p=2$, where $p$ denotes the order of the tensor. In particular, we show that the sample complexity required for recovering the spike associated with the largest SNR matches the well-known algorithmic threshold for the single-spike case, while this threshold degrades when recovering all $r$ spikes. As a key step, we provide a detailed characterization of the trajectory and interactions of low-dimensional projections that capture the high-dimensional dynamics.
We present a novel class of projected gradient (PG) methods for minimizing a smooth but not necessarily convex function over a convex compact set. We first provide a novel analysis of the "vanilla" PG method, achieving the best-known iteration complexity for finding an approximate stationary point of the problem. We then develop an "auto-conditioned" projected gradient (AC-PG) variant that achieves the same iteration complexity without requiring the input of the Lipschitz constant of the gradient or any line search procedure. The key idea is to estimate the Lipschitz constant using first-order information gathered from the previous iterations, and to show that the error caused by underestimating the Lipschitz constant can be properly controlled. We then generalize the PG methods to the stochastic setting, by proposing a stochastic projected gradient (SPG) method and a variance-reduced stochastic gradient (VR-SPG) method, achieving new complexity bounds in different oracle settings. We also present auto-conditioned stepsize policies for both stochastic PG methods and establish comparable convergence guarantees.
A statistical network model with overlapping communities can be generated as a superposition of mutually independent random graphs of varying size. The model is parameterized by the number of nodes, the number of communities, and the joint distribution of the community size and the edge probability. This model admits sparse parameter regimes with power-law limiting degree distributions and non-vanishing clustering coefficients. This article presents large-scale approximations of clique and cycle frequencies for graph samples generated by the model, which are valid for regimes with unbounded numbers of overlapping communities. Our results reveal the growth rates of these subgraph frequencies and show that their theoretical densities can be reliably estimated from data.
We propose a novel diffusion map particle system (DMPS) for generative modeling, based on diffusion maps and Laplacian-adjusted Wasserstein gradient descent (LAWGD). Diffusion maps are used to approximate the generator of the corresponding Langevin diffusion process from samples, and hence to learn the underlying data-generating manifold. On the other hand, LAWGD enables efficient sampling from the target distribution given a suitable choice of kernel, which we construct here via a spectral approximation of the generator, computed with diffusion maps. Our method requires no offline training and minimal tuning, and can outperform other approaches on data sets of moderate dimension.
This paper focuses on variable selection for a partially linear single-index varying-coefficient model. A regularized variable selection procedure by combining basis function approximations with SCAD penalty is proposed. It can simultaneously select significant variables in the parametric and nonparametric components and estimate the nonzero regression coefficients and coefficient functions. The consistency of the variable selection procedure and the oracle property of the penalized least-squares estimators for high-dimensional data are established. Some simulations and the real data analysis are constructed to illustrate the finite sample performances of the proposed method.
We prove, for stably computably enumerable formal systems, direct analogues of the first and second incompleteness theorems of G\"odel. A typical stably computably enumerable set is the set of Diophantine equations with no integer solutions, and in particular such sets are generally not computably enumerable. And so this gives the first extension of the second incompleteness theorem to non classically computable formal systems. Let's motivate this with a somewhat physical application. Let $\mathcal{H} $ be the suitable infinite time limit (stabilization in the sense of the paper) of the mathematical output of humanity, specializing to first order sentences in the language of arithmetic (for simplicity), and understood as a formal system. Suppose that all the relevant physical processes in the formation of $\mathcal{H} $ are Turing computable. Then as defined $\mathcal{H} $ may \emph{not} be computably enumerable, but it is stably computably enumerable. Thus, the classical G\"odel disjunction applied to $\mathcal{H} $ is meaningless, but applying our incompleteness theorems to $\mathcal{H} $ we then get a sharper version of G\"odel's disjunction: assume $\mathcal{H} \vdash PA$ then either $\mathcal{H} $ is not stably computably enumerable or $\mathcal{H} $ is not 1-consistent (in particular is not sound) or $\mathcal{H} $ cannot prove a certain true statement of arithmetic (and cannot disprove it if in addition $\mathcal{H} $ is 2-consistent).
Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.