亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The locally modified finite element method, which is introduced in [Frei, Richter: SINUM 52(2014), p. 2315-2334], is a simple fitted finite element method that is able to resolve weak discontinuities in interface problems. The method is based on a fixed structured coarse mesh, which is then refined into sub-elements to resolve an interior interface. In this work, we extend the locally modified finite element method {in two space dimensions} to second order using an isoparametric approach in the interface elements. Thereby we need to take care that the resulting curved edges do not lead to degenerate sub-elements. We prove optimal a priori error estimates in the $L^2$-norm and in a discrete energy norm. Finally, we present numerical examples to substantiate the theoretical findings.

相關內容

In this work we propose tailored model order reduction for varying boundary optimal control problems governed by parametric partial differential equations. With varying boundary control, we mean that a specific parameter changes where the boundary control acts on the system. This peculiar formulation might benefit from model order reduction. Indeed, fast and reliable simulations of this model can be of utmost usefulness in many applied fields, such as geophysics and energy engineering. However, varying boundary control features very complicated and diversified parametric behaviour for the state and adjoint variables. The state solution, for example, changing the boundary control parameter, might feature transport phenomena. Moreover, the problem loses its affine structure. It is well known that classical model order reduction techniques fail in this setting, both in accuracy and in efficiency. Thus, we propose reduced approaches inspired by the ones used when dealing with wave-like phenomena. Indeed, we compare standard proper orthogonal decomposition with two tailored strategies: geometric recasting and local proper orthogonal decomposition. Geometric recasting solves the optimization system in a reference domain simplifying the problem at hand avoiding hyper-reduction, while local proper orthogonal decomposition builds local bases to increase the accuracy of the reduced solution in very general settings (where geometric recasting is unfeasible). We compare the various approaches on two different numerical experiments based on geometries of increasing complexity.

Learning optimal control policies directly on physical systems is challenging since even a single failure can lead to costly hardware damage. Most existing model-free learning methods that guarantee safety, i.e., no failures, during exploration are limited to local optima. A notable exception is the GoSafe algorithm, which, unfortunately, cannot handle high-dimensional systems and hence cannot be applied to most real-world dynamical systems. This work proposes GoSafeOpt as the first algorithm that can safely discover globally optimal policies for high-dimensional systems while giving safety and optimality guarantees. We demonstrate the superiority of GoSafeOpt over competing model-free safe learning methods on a robot arm that would be prohibitive for GoSafe.

Hybrid dynamical systems, i.e. systems that have both continuous and discrete states, are ubiquitous in engineering, but are difficult to work with due to their discontinuous transitions. For example, a robot leg is able to exert very little control effort while it is in the air compared to when it is on the ground. When the leg hits the ground, the penetrating velocity instantaneously collapses to zero. These instantaneous changes in dynamics and discontinuities (or jumps) in state make standard smooth tools for planning, estimation, control, and learning difficult for hybrid systems. One of the key tools for accounting for these jumps is called the saltation matrix. The saltation matrix is the sensitivity update when a hybrid jump occurs and has been used in a variety of fields including robotics, power circuits, and computational neuroscience. This paper presents an intuitive derivation of the saltation matrix and discusses what it captures, where it has been used in the past, how it is used for linear and quadratic forms, how it is computed for rigid body systems with unilateral constraints, and some of the structural properties of the saltation matrix in these cases.

We introduce the local information cost (LIC), which quantifies the amount of information that nodes in a network need to learn when solving a graph problem. We show that the local information cost presents a natural lower bound on the communication complexity of distributed algorithms. For the synchronous CONGEST $KT_1$ model, where each node has initial knowledge of its neighbors' IDs, we prove that $\Omega(\frac{\text{LIC}_\gamma(P)}{\log\tau \log n})$ bits are required for solving a graph problem $P$ with a $\tau$-round algorithm that errs with probability at most $\gamma$. Our result is the first lower bound that yields a general trade-off between communication and time for graph problems in the CONGEST $KT_1$ model. We demonstrate how to apply the local information cost by deriving a lower bound on the communication complexity of computing routing tables for all-pairs-shortest-paths (APSP) routing, as well as for computing a spanner with multiplicative stretch $2t-1$ that consists of at most $O(n^{1+\frac{1}{t} + \epsilon})$ edges, where $\epsilon = O( {1}/{t^2} )$. More concretely, we derive the following lower bounds in the CONGEST model under the $KT_1$ assumption: For constructing routing tables, we show that any $O(\text{poly}(n))$-time algorithm has a communication complexity of $\Omega( {n^2}/{\log^2 n} )$ bits. Our main result is for constructing graph spanners: We show that any $O(\text{poly}(n))$-time algorithm must send at least $\tilde\Omega(\tfrac{1}{t^2} n^{1+{1}/{2t}})$ bits. Previously, only a trivial lower bound of $\tilde \Omega(n)$ bits was known for these problems.

In this paper, we study the estimation of the derivative of a regression function in a standard univariate regression model. The estimators are defined either by derivating nonparametric least-squares estimators of the regression function or by estimating the projection of the derivative. We prove two simple risk bounds allowing to compare our estimators. More elaborate bounds under a stability assumption are then provided. Bases and spaces on which we can illustrate our assumptions and first results are both of compact or non compact type, and we discuss the rates reached by our estimators. They turn out to be optimal in the compact case. Lastly, we propose a model selection procedure and prove the associated risk bound. To consider bases with a non compact support makes the problem difficult.

We study collaborative normal mean estimation, where $m$ strategic agents collect i.i.d samples from a normal distribution $\mathcal{N}(\mu, \sigma^2)$ at a cost. They all wish to estimate the mean $\mu$. By sharing data with each other, agents can obtain better estimates while keeping the cost of data collection small. To facilitate this collaboration, we wish to design mechanisms that encourage agents to collect a sufficient amount of data and share it truthfully, so that they are all better off than working alone. In naive mechanisms, such as simply pooling and sharing all the data, an individual agent might find it beneficial to under-collect and/or fabricate data, which can lead to poor social outcomes. We design a novel mechanism that overcomes these challenges via two key techniques: first, when sharing the others' data with an agent, the mechanism corrupts this dataset proportional to how much the data reported by the agent differs from the others; second, we design minimax optimal estimators for the corrupted dataset. Our mechanism, which is incentive compatible and individually rational, achieves a social penalty (sum of all agents' estimation errors and data collection costs) that is at most a factor 2 of the global minimum. When applied to high dimensional (non-Gaussian) distributions with bounded variance, this mechanism retains these three properties, but with slightly weaker results. Finally, in two special cases where we restrict the strategy space of the agents, we design mechanisms that essentially achieve the global minimum.

In this paper, we present a novel hybrid method for solving a Stokes interface problem in a regular domain with jump discontinuities on an interface. Our approach combines the expressive power of neural networks with the convergence of finite difference schemes to achieve efficient implementations and accurate results. The key concept of our method is to decompose the solution into two parts: the singular part and the regular part. We employ neural networks to approximate the singular part, which captures the jump discontinuities across the interface. We then utilize a finite difference scheme to approximate the regular part, which handles the smooth variations of the solution in that regular domain. To validate the effectiveness of our approach, we present two- and three-dimensional examples to demonstrate the accuracy and convergence of the proposed method, and show that our proposed hybrid method provides an innovative and reliable approach to tackle Stokes interface problems.

We design and compute a class of optimal control problems for reaction-diffusion systems. They form mean field control problems related to multi-density reaction-diffusion systems. To solve proposed optimal control problems numerically, we first apply high-order finite element methods to discretize the space-time domain and then solve the optimal control problem using augmented Lagrangian methods (ALG2). Numerical examples, including generalized optimal transport and mean field control problems between Gaussian distributions and image densities, demonstrate the effectiveness of the proposed modeling and computational methods for mean field control problems involving reaction-diffusion equations/systems.

We propose a new geometrically unfitted finite element method based on discontinuous Trefftz ansatz spaces. Trefftz methods allow for a reduction in the number of degrees of freedom in discontinuous Galerkin methods, thereby, the costs for solving arising linear systems significantly. This work shows that they are also an excellent way to reduce the number of degrees of freedom in an unfitted setting. We present a unified analysis of a class of geometrically unfitted discontinuous Galerkin methods with different stabilisation mechanisms to deal with small cuts between the geometry and the mesh. We cover stability and derive a-priori error bounds, including errors arising from geometry approximation for the class of discretisations for a model Poisson problem in a unified manner. The analysis covers Trefftz and full polynomial ansatz spaces, alike. Numerical examples validate the theoretical findings and demonstrate the potential of the approach.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

北京阿比特科技有限公司