亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Current guidelines from the World Health Organization indicate that the SARSCoV-2 coronavirus, which results in the novel coronavirus disease (COVID-19), is transmitted through respiratory droplets or by contact. Contact transmission occurs when contaminated hands touch the mucous membrane of the mouth, nose, or eyes. Moreover, pathogens can also be transferred from one surface to another by contaminated hands, which facilitates transmission by indirect contact. Consequently, hands hygiene is extremely important to prevent the spread of the SARSCoV-2 virus. Additionally, hand washing and/or hand rubbing disrupts also the transmission of other viruses and bacteria that cause common colds, flu and pneumonia, thereby reducing the overall disease burden. The vast proliferation of wearable devices, such as smartwatches, containing acceleration, rotation, magnetic field sensors, etc., together with the modern technologies of artificial intelligence, such as machine learning and more recently deep-learning, allow the development of accurate applications for recognition and classification of human activities such as: walking, climbing stairs, running, clapping, sitting, sleeping, etc. In this work we evaluate the feasibility of an automatic system, based on current smartwatches, which is able to recognize when a subject is washing or rubbing its hands, in order to monitor parameters such as frequency and duration, and to evaluate the effectiveness of the gesture. Our preliminary results show a classification accuracy of about 95% and of about 94% for respectively deep and standard learning techniques.

相關內容

Current AI systems lack several important human capabilities, such as adaptability, generalizability, self-control, consistency, common sense, and causal reasoning. We believe that existing cognitive theories of human decision making, such as the thinking fast and slow theory, can provide insights on how to advance AI systems towards some of these capabilities. In this paper, we propose a general architecture that is based on fast/slow solvers and a metacognitive component. We then present experimental results on the behavior of an instance of this architecture, for AI systems that make decisions about navigating in a constrained environment. We show how combining the fast and slow decision modalities allows the system to evolve over time and gradually pass from slow to fast thinking with enough experience, and that this greatly helps in decision quality, resource consumption, and efficiency.

A robotic system of multiple unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) has the potential for advancing autonomous object geolocation performance. Much research has focused on algorithmic improvements on individual components, such as navigation, motion planning, and perception. In this paper, we present a UGV-UAV object detection and geolocation system, which performs perception, navigation, and planning autonomously in real scale in unstructured environment. We designed novel sensor pods equipped with multispectral (visible, near-infrared, thermal), high resolution (181.6 Mega Pixels), stereo (near-infrared pair), wide field of view (192 degree HFOV) array. We developed a novel on-board software-hardware architecture to process the high volume sensor data in real-time, and we built a custom AI subsystem composed of detection, tracking, navigation, and planning for autonomous objects geolocation in real-time. This research is the first real scale demonstration of such high speed data processing capability. Our novel modular sensor pod can boost relevant computer vision and machine learning research. Our novel hardware-software architecture is a solid foundation for system-level and component-level research. Our system is validated through data-driven offline tests as well as a series of field tests in unstructured environments. We present quantitative results as well as discussions on key robotic system level challenges which manifest when we build and test the system. This system is the first step toward a UGV-UAV cooperative reconnaissance system in the future.

Poor sitting habits have been identified as a risk factor to musculoskeletal disorders and lower back pain especially on the elderly, disabled people, and office workers. In the current computerized world, even while involved in leisure or work activity, people tend to spend most of their days sitting at computer desks. This can result in spinal pain and related problems. Therefore, a means to remind people about their sitting habits and provide recommendations to counterbalance, such as physical exercise, is important. Posture recognition for seated postures have not received enough attention as most works focus on standing postures. Wearable sensors, pressure or force sensors, videos and images were used for posture recognition in the literature. The aim of this study is to build Machine Learning models for classifying sitting posture of a person by analyzing data collected from a chair platted with two 32 by 32 pressure sensors at its seat and backrest. Models were built using five algorithms: Random Forest (RF), Gaussian Na\"ive Bayes, Logistic Regression, Support Vector Machine and Deep Neural Network (DNN). All the models are evaluated using KFold cross-validation technique. This paper presents experiments conducted using the two separate datasets, controlled and realistic, and discusses results achieved at classifying six sitting postures. Average classification accuracies of 98% and 97% were achieved on the controlled and realistic datasets, respectively.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Siamese tracking has achieved groundbreaking performance in recent years, where the essence is the efficient matching operator cross-correlation and its variants. Besides the remarkable success, it is important to note that the heuristic matching network design relies heavily on expert experience. Moreover, we experimentally find that one sole matching operator is difficult to guarantee stable tracking in all challenging environments. Thus, in this work, we introduce six novel matching operators from the perspective of feature fusion instead of explicit similarity learning, namely Concatenation, Pointwise-Addition, Pairwise-Relation, FiLM, Simple-Transformer and Transductive-Guidance, to explore more feasibility on matching operator selection. The analyses reveal these operators' selective adaptability on different environment degradation types, which inspires us to combine them to explore complementary features. To this end, we propose binary channel manipulation (BCM) to search for the optimal combination of these operators. BCM determines to retrain or discard one operator by learning its contribution to other tracking steps. By inserting the learned matching networks to a strong baseline tracker Ocean, our model achieves favorable gains by $67.2 \rightarrow 71.4$, $52.6 \rightarrow 58.3$, $70.3 \rightarrow 76.0$ success on OTB100, LaSOT, and TrackingNet, respectively. Notably, Our tracker, dubbed AutoMatch, uses less than half of training data/time than the baseline tracker, and runs at 50 FPS using PyTorch. Code and model will be released at //github.com/JudasDie/SOTS.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

Recently, fully recurrent neural network (RNN) based end-to-end models have been proven to be effective for multi-speaker speech recognition in both the single-channel and multi-channel scenarios. In this work, we explore the use of Transformer models for these tasks by focusing on two aspects. First, we replace the RNN-based encoder-decoder in the speech recognition model with a Transformer architecture. Second, in order to use the Transformer in the masking network of the neural beamformer in the multi-channel case, we modify the self-attention component to be restricted to a segment rather than the whole sequence in order to reduce computation. Besides the model architecture improvements, we also incorporate an external dereverberation preprocessing, the weighted prediction error (WPE), enabling our model to handle reverberated signals. Experiments on the spatialized wsj1-2mix corpus show that the Transformer-based models achieve 40.9% and 25.6% relative WER reduction, down to 12.1% and 6.4% WER, under the anechoic condition in single-channel and multi-channel tasks, respectively, while in the reverberant case, our methods achieve 41.5% and 13.8% relative WER reduction, down to 16.5% and 15.2% WER.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

This paper introduces a novel neural network-based reinforcement learning approach for robot gaze control. Our approach enables a robot to learn and to adapt its gaze control strategy for human-robot interaction neither with the use of external sensors nor with human supervision. The robot learns to focus its attention onto groups of people from its own audio-visual experiences, independently of the number of people, of their positions and of their physical appearances. In particular, we use a recurrent neural network architecture in combination with Q-learning to find an optimal action-selection policy; we pre-train the network using a simulated environment that mimics realistic scenarios that involve speaking/silent participants, thus avoiding the need of tedious sessions of a robot interacting with people. Our experimental evaluation suggests that the proposed method is robust against parameter estimation, i.e. the parameter values yielded by the method do not have a decisive impact on the performance. The best results are obtained when both audio and visual information is jointly used. Experiments with the Nao robot indicate that our framework is a step forward towards the autonomous learning of socially acceptable gaze behavior.

北京阿比特科技有限公司