亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Past research into robotic planning with temporal logic specifications, notably Linear Temporal Logic (LTL), was largely based on singular formulas for individual or groups of robots. But with increasing task complexity, LTL formulas unavoidably grow lengthy, complicating interpretation and specification generation, and straining the computational capacities of the planners. By leveraging the intrinsic structure of tasks, we introduced a hierarchical structure to LTL specifications with requirements on syntax and semantics, and proved that they are more expressive than their flat counterparts. Second, we employ a search-based approach to synthesize plans for a multi-robot system, accomplishing simultaneous task allocation and planning. The search space is approximated by loosely interconnected sub-spaces, with each sub-space corresponding to one LTL specification. The search is predominantly confined to a single sub-space, transitioning to another sub-space under certain conditions, determined by the decomposition of automatons. Moreover, multiple heuristics are formulated to expedite the search significantly. A theoretical analysis concerning completeness and optimality is conducted under mild assumptions. When compared with existing methods on service tasks, our method outperforms in terms of execution times with comparable solution quality. Finally, scalability is evaluated by testing a group of 30 robots and achieving reasonable runtimes.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · 可理解性 · Integration · 語言模型化 · MoDELS ·
2024 年 2 月 26 日

With the rapid development of Large Language Models (LLMs), various explorations have arisen to utilize LLMs capability of context understanding on recommender systems. While pioneering strategies have primarily transformed traditional recommendation tasks into challenges of natural language generation, there has been a relative scarcity of exploration in the domain of session-based recommendation (SBR) due to its specificity. SBR has been primarily dominated by Graph Neural Networks, which have achieved many successful outcomes due to their ability to capture both the implicit and explicit relationships between adjacent behaviors. The structural nature of graphs contrasts with the essence of natural language, posing a significant adaptation gap for LLMs. In this paper, we introduce large language models with graphical Session-Based recommendation, named LLMGR, an effective framework that bridges the aforementioned gap by harmoniously integrating LLMs with Graph Neural Networks (GNNs) for SBR tasks. This integration seeks to leverage the complementary strengths of LLMs in natural language understanding and GNNs in relational data processing, leading to a more powerful session-based recommender system that can understand and recommend items within a session. Moreover, to endow the LLM with the capability to empower SBR tasks, we design a series of prompts for both auxiliary and major instruction tuning tasks. These prompts are crafted to assist the LLM in understanding graph-structured data and align textual information with nodes, effectively translating nuanced user interactions into a format that can be understood and utilized by LLM architectures. Extensive experiments on three real-world datasets demonstrate that LLMGR outperforms several competitive baselines, indicating its effectiveness in enhancing SBR tasks and its potential as a research direction for future exploration.

Advances towards more faithful and traceable answers of Large Language Models (LLMs) are crucial for various research and practical endeavors. One avenue in reaching this goal is basing the answers on reliable sources. However, this Evidence-Based QA has proven to work insufficiently with LLMs in terms of citing the correct sources (source quality) and truthfully representing the information within sources (answer attributability). In this work, we systematically investigate how to robustly fine-tune LLMs for better source quality and answer attributability. Specifically, we introduce a data generation pipeline with automated data quality filters, which can synthesize diversified high-quality training and testing data at scale. We further introduce four test sets to benchmark the robustness of fine-tuned specialist models. Extensive evaluation shows that fine-tuning on synthetic data improves performance on both in- and out-of-distribution. Furthermore, we show that data quality, which can be drastically improved by proposed quality filters, matters more than quantity in improving Evidence-Based QA.

Variational inference with normalizing flows (NFs) is an increasingly popular alternative to MCMC methods. In particular, NFs based on coupling layers (Real NVPs) are frequently used due to their good empirical performance. In theory, increasing the depth of normalizing flows should lead to more accurate posterior approximations. However, in practice, training deep normalizing flows for approximating high-dimensional posterior distributions is often infeasible due to the high variance of the stochastic gradients. In this work, we show that previous methods for stabilizing the variance of stochastic gradient descent can be insufficient to achieve stable training of Real NVPs. As the source of the problem, we identify that, during training, samples often exhibit unusual high values. As a remedy, we propose a combination of two methods: (1) soft-thresholding of the scale in Real NVPs, and (2) a bijective soft log transformation of the samples. We evaluate these and other previously proposed modification on several challenging target distributions, including a high-dimensional horseshoe logistic regression model. Our experiments show that with our modifications, stable training of Real NVPs for posteriors with several thousand dimensions is possible, allowing for more accurate marginal likelihood estimation via importance sampling. Moreover, we evaluate several common training techniques and architecture choices and provide practical advise for training NFs for high-dimensional variational inference.

Large Language Models (LLMs) are increasingly used for various tasks with graph structures, such as robotic planning, knowledge graph completion, and common-sense reasoning. Though LLMs can comprehend graph information in a textual format, they overlook the rich visual modality, which is an intuitive way for humans to comprehend structural information and conduct graph reasoning. The potential benefits and capabilities of representing graph structures as visual images (i.e., visual graph) is still unexplored. In this paper, we take the first step in incorporating visual information into graph reasoning tasks and propose a new benchmark GITQA, where each sample is a tuple (graph, image, textual description). We conduct extensive experiments on the GITQA benchmark using state-of-the-art multimodal LLMs. Results on graph reasoning tasks show that combining textual and visual information together performs better than using one modality alone. Moreover, the LLaVA-7B/13B models finetuned on the training set (referred to as GITA), achieve higher accuracy than the closed-source model GPT-4(V). We also study the effects of augmentations in graph reasoning.

Large Language Models (LLMs) are reshaping the research landscape in artificial intelligence, particularly as model parameters scale up significantly, unlocking remarkable capabilities across various domains. Nevertheless, the scalability of model parameters faces constraints due to limitations in GPU memory and computational speed. To address these constraints, various weight compression methods have emerged, such as Pruning and Quantization. Given the low-rank nature of weight matrices in language models, the reduction of weights through matrix decomposition undoubtedly holds significant potential and promise. In this paper, drawing upon the intrinsic structure of LLMs, we propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices. Significantly, our method is characterized by without necessitating additional involvement of any corpus, while simultaneously preserving orthogonality in conjunction with pruning and quantization methods. We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data. Additionally, we explore the fundamental properties of the weight matrix of LLMs undergone Rank-k Approximation and conduct comprehensive experiments to elucidate our hypothesis.

Multimodal recommender systems amalgamate multimodal information (e.g., textual descriptions, images) into a collaborative filtering framework to provide more accurate recommendations. While the incorporation of multimodal information could enhance the interpretability of these systems, current multimodal models represent users and items utilizing entangled numerical vectors, rendering them arduous to interpret. To address this, we propose a Disentangled Graph Variational Auto-Encoder (DGVAE) that aims to enhance both model and recommendation interpretability. DGVAE initially projects multimodal information into textual contents, such as converting images to text, by harnessing state-of-the-art multimodal pre-training technologies. It then constructs a frozen item-item graph and encodes the contents and interactions into two sets of disentangled representations utilizing a simplified residual graph convolutional network. DGVAE further regularizes these disentangled representations through mutual information maximization, aligning the representations derived from the interactions between users and items with those learned from textual content. This alignment facilitates the interpretation of user binary interactions via text. Our empirical analysis conducted on three real-world datasets demonstrates that DGVAE significantly surpasses the performance of state-of-the-art baselines by a margin of 10.02%. We also furnish a case study from a real-world dataset to illustrate the interpretability of DGVAE. Code is available at: \url{//github.com/enoche/DGVAE}.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

北京阿比特科技有限公司