亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Score based approaches to sampling have shown much success as a generative algorithm to produce new samples from a target density given a pool of initial samples. In this work, we consider if we have no initial samples from the target density, but rather $0^{th}$ and $1^{st}$ order oracle access to the log likelihood. Such problems may arise in Bayesian posterior sampling, or in approximate minimization of non-convex functions. Using this knowledge alone, we propose a Monte Carlo method to estimate the score empirically as a particular expectation of a random variable. Using this estimator, we can then run a discrete version of the backward flow SDE to produce samples from the target density. This approach has the benefit of not relying on a pool of initial samples from the target density, and it does not rely on a neural network or other black box model to estimate the score.

相關內容

Suppose we are given access to $n$ independent samples from distribution $\mu$ and we wish to output one of them with the goal of making the output distributed as close as possible to a target distribution $\nu$. In this work we show that the optimal total variation distance as a function of $n$ is given by $\tilde\Theta(\frac{D}{f'(n)})$ over the class of all pairs $\nu,\mu$ with a bounded $f$-divergence $D_f(\nu\|\mu)\leq D$. Previously, this question was studied only for the case when the Radon-Nikodym derivative of $\nu$ with respect to $\mu$ is uniformly bounded. We then consider an application in the seemingly very different field of smoothed online learning, where we show that recent results on the minimax regret and the regret of oracle-efficient algorithms still hold even under relaxed constraints on the adversary (to have bounded $f$-divergence, as opposed to bounded Radon-Nikodym derivative). Finally, we also study efficacy of importance sampling for mean estimates uniform over a function class and compare importance sampling with rejection sampling.

Bayesian posterior distributions arising in modern applications, including inverse problems in partial differential equation models in tomography and subsurface flow, are often computationally intractable due to the large computational cost of evaluating the data likelihood. To alleviate this problem, we consider using Gaussian process regression to build a surrogate model for the likelihood, resulting in an approximate posterior distribution that is amenable to computations in practice. This work serves as an introduction to Gaussian process regression, in particular in the context of building surrogate models for inverse problems, and presents new insights into a suitable choice of training points. We show that the error between the true and approximate posterior distribution can be bounded by the error between the true and approximate likelihood, measured in the $L^2$-norm weighted by the true posterior, and that efficiently bounding the error between the true and approximate likelihood in this norm suggests choosing the training points in the Gaussian process surrogate model based on the true posterior.

We introduce a framework that enables efficient sampling from learned probability distributions for MRI reconstruction. Different from conventional deep learning-based MRI reconstruction techniques, samples are drawn from the posterior distribution given the measured k-space using the Markov chain Monte Carlo (MCMC) method. In addition to the maximum a posteriori (MAP) estimate for the image, which can be obtained with conventional methods, the minimum mean square error (MMSE) estimate and uncertainty maps can also be computed. The data-driven Markov chains are constructed from the generative model learned from a given image database and are independent of the forward operator that is used to model the k-space measurement. This provides flexibility because the method can be applied to k-space acquired with different sampling schemes or receive coils using the same pre-trained models. Furthermore, we use a framework based on a reverse diffusion process to be able to utilize advanced generative models. The performance of the method is evaluated on an open dataset using 10-fold undersampling in k-space.

Deep generative models have demonstrated the ability to generate complex, high-dimensional, and photo-realistic data. However, a unified framework for evaluating different generative modeling families remains a challenge. Indeed, likelihood-based metrics do not apply in many cases while pure sample-based metrics such as FID fail to capture known failure modes such as overfitting on training data. In this work, we introduce the Feature Likelihood Score (FLS), a parametric sample-based score that uses density estimation to quantitatively measure the quality/diversity of generated samples while taking into account overfitting. We empirically demonstrate the ability of FLS to identify specific overfitting problem cases, even when previously proposed metrics fail. We further perform an extensive experimental evaluation on various image datasets and model classes. Our results indicate that FLS matches intuitions of previous metrics, such as FID, while providing a more holistic evaluation of generative models that highlights models whose generalization abilities are under or overappreciated. Code for computing FLS is provided at //github.com/marcojira/fls

In day-ahead electricity markets based on uniform marginal pricing, small variations in the offering and bidding curves may substantially modify the resulting market outcomes. In this work, we deal with the problem of finding the optimal offering curve for a risk-averse profit-maximizing generating company (GENCO) in a data-driven context. In particular, a large GENCO's market share may imply that her offering strategy can alter the marginal price formation, which can be used to increase profit. We tackle this problem from a novel perspective. First, we propose a optimization-based methodology to summarize each GENCO's step-wise supply curves into a subset of representative price-energy blocks. Then, the relationship between the market price and the resulting energy block offering prices is modeled through a Bayesian linear regression approach, which also allows us to generate stochastic scenarios for the sensibility of the market towards the GENCO strategy, represented by the regression coefficient probabilistic distributions. Finally, this predictive model is embedded in the stochastic optimization model by employing a constraint learning approach. Results show how allowing the GENCO to deviate from her true marginal costs renders significant changes in her profits and the market marginal price. Furthermore, these results have also been tested in an out-of-sample validation setting, showing how this optimal offering strategy is also effective in a real-world market contest.

The canonical formulation of federated learning treats it as a distributed optimization problem where the model parameters are optimized against a global loss function that decomposes across client loss functions. A recent alternative formulation instead treats federated learning as a distributed inference problem, where the goal is to infer a global posterior from partitioned client data (Al-Shedivat et al., 2021). This paper extends the inference view and describes a variational inference formulation of federated learning where the goal is to find a global variational posterior that well-approximates the true posterior. This naturally motivates an expectation propagation approach to federated learning (FedEP), where approximations to the global posterior are iteratively refined through probabilistic message-passing between the central server and the clients. We conduct an extensive empirical study across various algorithmic considerations and describe practical strategies for scaling up expectation propagation to the modern federated setting. We apply FedEP on standard federated learning benchmarks and find that it outperforms strong baselines in terms of both convergence speed and accuracy.

As the scale of problems and data used for experimental design, signal processing and data assimilation grow, the oft-occuring least squares subproblems are correspondingly growing in size. As the scale of these least squares problems creates prohibitive memory movement costs for the usual incremental QR and Krylov-based algorithms, randomized least squares problems are garnering more attention. However, these randomized least squares solvers are difficult to integrate application algorithms as their uncertainty limits practical tracking of algorithmic progress and reliable stopping. Accordingly, in this work, we develop theoretically-rigorous, practical tools for quantifying the uncertainty of an important class of iterative randomized least squares algorithms, which we then use to track algorithmic progress and create a stopping condition. We demonstrate the effectiveness of our algorithm by solving a 0.78 TB least squares subproblem from the inner loop of incremental 4D-Var using only 195 MB of memory.

The dynamics of a power system with large penetration of renewable energy resources are becoming more nonlinear due to the intermittence of these resources and the switching of their power electronic devices. Therefore, it is crucial to accurately identify the dynamical modes of oscillation of such a power system when it is subject to disturbances to initiate appropriate preventive or corrective control actions. In this paper, we propose a high-order blind source identification (HOBI) algorithm based on the copula statistic to address these non-linear dynamics in modal analysis. The method combined with Hilbert transform (HOBI-HT) and iteration procedure (HOBMI) can identify all the modes as well as the model order from the observation signals obtained from the number of channels as low as one. We access the performance of the proposed method on numerical simulation signals and recorded data from a simulation of time domain analysis on the classical 11-Bus 4-Machine test system. Our simulation results outperform the state-of-the-art method in accuracy and effectiveness.

We analyze to what extent final users can infer information about the level of protection of their data when the data obfuscation mechanism is a priori unknown to them (the so-called ''black-box'' scenario). In particular, we delve into the investigation of two notions of local differential privacy (LDP), namely {\epsilon}-LDP and R\'enyi LDP. On one hand, we prove that, without any assumption on the underlying distributions, it is not possible to have an algorithm able to infer the level of data protection with provable guarantees; this result also holds for the central versions of the two notions of DP considered. On the other hand, we demonstrate that, under reasonable assumptions (namely, Lipschitzness of the involved densities on a closed interval), such guarantees exist and can be achieved by a simple histogram-based estimator. We validate our results experimentally and we note that, on a particularly well-behaved distribution (namely, the Laplace noise), our method gives even better results than expected, in the sense that in practice the number of samples needed to achieve the desired confidence is smaller than the theoretical bound, and the estimation of {\epsilon} is more precise than predicted.

We investigate solution methods for large-scale inverse problems governed by partial differential equations (PDEs) via Bayesian inference. The Bayesian framework provides a statistical setting to infer uncertain parameters from noisy measurements. To quantify posterior uncertainty, we adopt Markov Chain Monte Carlo (MCMC) approaches for generating samples. To increase the efficiency of these approaches in high-dimension, we make use of local information about gradient and Hessian of the target potential, also via Hamiltonian Monte Carlo (HMC). Our target application is inferring the field of soil permeability processing observations of pore pressure, using a nonlinear PDE poromechanics model for predicting pressure from permeability. We compare the performance of different sampling approaches in this and other settings. We also investigate the effect of dimensionality and non-gaussianity of distributions on the performance of different sampling methods.

北京阿比特科技有限公司