亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Considering query variance in information retrieval (IR) experiments is beneficial for retrieval effectiveness. Especially ranking ensembles based on different topically related queries retrieve better results than rankings based on a single query alone. Recently, generative instruction-tuned Large Language Models (LLMs) improved on a variety of different tasks in capturing human language. To this end, this work explores the feasibility of using synthetic query variants generated by instruction-tuned LLMs in data fusion experiments. More specifically, we introduce a lightweight, unsupervised, and cost-efficient approach that exploits principled prompting and data fusion techniques. In our experiments, LLMs produce more effective queries when provided with additional context information on the topic. Furthermore, our analysis based on four TREC newswire benchmarks shows that data fusion based on synthetic query variants is significantly better than baselines with single queries and also outperforms pseudo-relevance feedback methods. We publicly share the code and query datasets with the community as resources for follow-up studies.

相關內容

Advancements in foundation models (FMs) have led to a paradigm shift in machine learning. The rich, expressive feature representations from these pre-trained, large-scale FMs are leveraged for multiple downstream tasks, usually via lightweight fine-tuning of a shallow fully-connected network following the representation. However, the non-interpretable, black-box nature of this prediction pipeline can be a challenge, especially in critical domains such as healthcare, finance, and security. In this paper, we explore the potential of Concept Bottleneck Models (CBMs) for transforming complex, non-interpretable foundation models into interpretable decision-making pipelines using high-level concept vectors. Specifically, we focus on the test-time deployment of such an interpretable CBM pipeline "in the wild", where the input distribution often shifts from the original training distribution. We first identify the potential failure modes of such a pipeline under different types of distribution shifts. Then we propose an adaptive concept bottleneck framework to address these failure modes, that dynamically adapts the concept-vector bank and the prediction layer based solely on unlabeled data from the target domain, without access to the source (training) dataset. Empirical evaluations with various real-world distribution shifts show that our adaptation method produces concept-based interpretations better aligned with the test data and boosts post-deployment accuracy by up to 28%, aligning the CBM performance with that of non-interpretable classification.

LLMs have long demonstrated remarkable effectiveness in automatic program repair (APR), with OpenAI's ChatGPT being one of the most widely used models in this domain. Through continuous iterations and upgrades of GPT-family models, their performance in fixing bugs has already reached state-of-the-art levels. However, there are few works comparing the effectiveness and variations of different versions of GPT-family models on APR. In this work, inspired by the recent public release of the GPT-o1 models, we conduct the first study to compare the effectiveness of different versions of the GPT-family models in APR. We evaluate the performance of the latest version of the GPT-family models (i.e., O1-preview and O1-mini), GPT-4o, and the historical version of ChatGPT on APR. We conduct an empirical study of the four GPT-family models against other LLMs and APR techniques on the QuixBugs benchmark from multiple evaluation perspectives, including repair success rate, repair cost, response length, and behavior patterns. The results demonstrate that O1's repair capability exceeds that of prior GPT-family models, successfully fixing all 40 bugs in the benchmark. Our work can serve as a foundation for further in-depth exploration of the applications of GPT-family models in APR.

We introduce Causal Diffusion as the autoregressive (AR) counterpart of Diffusion models. It is a next-token(s) forecasting framework that is friendly to both discrete and continuous modalities and compatible with existing next-token prediction models like LLaMA and GPT. While recent works attempt to combine diffusion with AR models, we show that introducing sequential factorization to a diffusion model can substantially improve its performance and enables a smooth transition between AR and diffusion generation modes. Hence, we propose CausalFusion - a decoder-only transformer that dual-factorizes data across sequential tokens and diffusion noise levels, leading to state-of-the-art results on the ImageNet generation benchmark while also enjoying the AR advantage of generating an arbitrary number of tokens for in-context reasoning. We further demonstrate CausalFusion's multimodal capabilities through a joint image generation and captioning model, and showcase CausalFusion's ability for zero-shot in-context image manipulations. We hope that this work could provide the community with a fresh perspective on training multimodal models over discrete and continuous data.

Analyzing spatially varying effects is pivotal in geographic analysis. However, accurately capturing and interpreting this variability is challenging due to the increasing complexity and non-linearity of geospatial data. Recent advancements in integrating Geographically Weighted (GW) models with artificial intelligence (AI) methodologies offer novel approaches. However, these methods often focus on single algorithms and emphasize prediction over interpretability. The recent GeoShapley method integrates machine learning (ML) with Shapley values to explain the contribution of geographical features, advancing the combination of geospatial ML and explainable AI (XAI). Yet, it lacks exploration of the nonlinear interactions between geographical features and explanatory variables. Herein, an ensemble framework is proposed to merge local spatial weighting scheme with XAI and ML technologies to bridge this gap. Through tests on synthetic datasets and comparisons with GWR, MGWR, and GeoShapley, this framework is verified to enhance interpretability and predictive accuracy by elucidating spatial variability. Reproducibility is explored through the comparison of spatial weighting schemes and various ML models, emphasizing the necessity of model reproducibility to address model and parameter uncertainty. This framework works in both geographic regression and classification, offering a novel approach to understanding complex spatial phenomena.

Optimizing spectral graph neural networks (GNNs) remains a critical challenge in the field, yet the underlying processes are not well understood. In this paper, we investigate the inherent differences between graph convolution parameters and feature transformation parameters in spectral GNNs and their impact on the optimization landscape. Our analysis reveals that these differences contribute to a poorly conditioned problem, resulting in suboptimal performance. To address this issue, we introduce the concept of the block condition number of the Hessian matrix, which characterizes the difficulty of poorly conditioned problems in spectral GNN optimization. We then propose an asymmetric learning approach, dynamically preconditioning gradients during training to alleviate poorly conditioned problems. Theoretically, we demonstrate that asymmetric learning can reduce block condition numbers, facilitating easier optimization. Extensive experiments on eighteen benchmark datasets show that asymmetric learning consistently improves the performance of spectral GNNs for both heterophilic and homophilic graphs. This improvement is especially notable for heterophilic graphs, where the optimization process is generally more complex than for homophilic graphs. Code is available at //github.com/Mia-321/asym-opt.git.

Scene text spotting has attracted the enthusiasm of relative researchers in recent years. Most existing scene text spotters follow the detection-then-recognition paradigm, where the vanilla detection module hardly determines the reading order and leads to failure recognition. After rethinking the auto-regressive scene text recognition method, we find that a well-trained recognizer can implicitly perceive the local semantics of all characters in a complete word or a sentence without a character-level detection module. Local semantic knowledge not only includes text content but also spatial information in the right reading order. Motivated by the above analysis, we propose the Local Semantics Guided scene text Spotter (LSGSpotter), which auto-regressively decodes the position and content of characters guided by the local semantics. Specifically, two effective modules are proposed in LSGSpotter. On the one hand, we design a Start Point Localization Module (SPLM) for locating text start points to determine the right reading order. On the other hand, a Multi-scale Adaptive Attention Module (MAAM) is proposed to adaptively aggregate text features in a local area. In conclusion, LSGSpotter achieves the arbitrary reading order spotting task without the limitation of sophisticated detection, while alleviating the cost of computational resources with the grid sampling strategy. Extensive experiment results show LSGSpotter achieves state-of-the-art performance on the InverseText benchmark. Moreover, our spotter demonstrates superior performance on English benchmarks for arbitrary-shaped text, achieving improvements of 0.7\% and 2.5\% on Total-Text and SCUT-CTW1500, respectively. These results validate our text spotter is effective for scene texts in arbitrary reading order and shape.

Discretized techniques for vector tomographic reconstructions are prone to producing artifacts in the reconstructions. The quality of these reconstructions may further deteriorate as the amount of noise increases. In this work, we instead model the underlying vector fields using smooth neural fields. Owing to the fact that the activation functions in the neural network may be chosen to be smooth and the domain is no longer pixelated, the model results in high-quality reconstructions, even under presence of noise. In the case where we have underlying global continuous symmetry, we find that the neural network substantially improves the accuracy of the reconstruction over the existing techniques.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Weakly supervised phrase grounding aims at learning region-phrase correspondences using only image-sentence pairs. A major challenge thus lies in the missing links between image regions and sentence phrases during training. To address this challenge, we leverage a generic object detector at training time, and propose a contrastive learning framework that accounts for both region-phrase and image-sentence matching. Our core innovation is the learning of a region-phrase score function, based on which an image-sentence score function is further constructed. Importantly, our region-phrase score function is learned by distilling from soft matching scores between the detected object class names and candidate phrases within an image-sentence pair, while the image-sentence score function is supervised by ground-truth image-sentence pairs. The design of such score functions removes the need of object detection at test time, thereby significantly reducing the inference cost. Without bells and whistles, our approach achieves state-of-the-art results on the task of visual phrase grounding, surpassing previous methods that require expensive object detectors at test time.

北京阿比特科技有限公司