Automatic scoring engines have been used for scoring approximately fifteen million test-takers in just the last three years. This number is increasing further due to COVID-19 and the associated automation of education and testing. Despite such wide usage, the AI-based testing literature of these "intelligent" models is highly lacking. Most of the papers proposing new models rely only on quadratic weighted kappa (QWK) based agreement with human raters for showing model efficacy. However, this effectively ignores the highly multi-feature nature of essay scoring. Essay scoring depends on features like coherence, grammar, relevance, sufficiency and, vocabulary. To date, there has been no study testing Automated Essay Scoring: AES systems holistically on all these features. With this motivation, we propose a model agnostic adversarial evaluation scheme and associated metrics for AES systems to test their natural language understanding capabilities and overall robustness. We evaluate the current state-of-the-art AES models using the proposed scheme and report the results on five recent models. These models range from feature-engineering-based approaches to the latest deep learning algorithms. We find that AES models are highly overstable. Even heavy modifications(as much as 25%) with content unrelated to the topic of the questions do not decrease the score produced by the models. On the other hand, irrelevant content, on average, increases the scores, thus showing that the model evaluation strategy and rubrics should be reconsidered. We also ask 200 human raters to score both an original and adversarial response to seeing if humans can detect differences between the two and whether they agree with the scores assigned by auto scores.
We introduce AugLy, a data augmentation library with a focus on adversarial robustness. AugLy provides a wide array of augmentations for multiple modalities (audio, image, text, & video). These augmentations were inspired by those that real users perform on social media platforms, some of which were not already supported by existing data augmentation libraries. AugLy can be used for any purpose where data augmentations are useful, but it is particularly well-suited for evaluating robustness and systematically generating adversarial attacks. In this paper we present how AugLy works, benchmark it compared against existing libraries, and use it to evaluate the robustness of various state-of-the-art models to showcase AugLy's utility. The AugLy repository can be found at //github.com/facebookresearch/AugLy.
Automatic speech recognition (ASR) on low resource languages improves the access of linguistic minorities to technological advantages provided by artificial intelligence (AI). In this paper, we address the problem of data scarcity for the Hong Kong Cantonese language by creating a new Cantonese dataset. Our dataset, Multi-Domain Cantonese Corpus (MDCC), consists of 73.6 hours of clean read speech paired with transcripts, collected from Cantonese audiobooks from Hong Kong. It comprises philosophy, politics, education, culture, lifestyle and family domains, covering a wide range of topics. We also review all existing Cantonese datasets and analyze them according to their speech type, data source, total size and availability. We further conduct experiments with Fairseq S2T Transformer, a state-of-the-art ASR model, on the biggest existing dataset, Common Voice zh-HK, and our proposed MDCC, and the results show the effectiveness of our dataset. In addition, we create a powerful and robust Cantonese ASR model by applying multi-dataset learning on MDCC and Common Voice zh-HK.
The maturity of structural health monitoring technology brings ever-increasing opportunities for geotechnical structures and underground infrastructure systems to track the risk of structural failure, such as settlement-induced building damage, based on the monitored data. Reliability updating techniques can offer solutions to estimate the probability of failing to meet a prescribed objective using various types of information that are inclusive of equality and inequality. However, the update in reliability can be highly sensitive to monitoring location. Therefore, there may exist optimal locations in a system for monitoring that yield the maximum value for reliability updating. This paper proposes a computational framework for optimal monitoring location based on an innovative metric called sensitivity of information (SOI) that quantifies the relative change in unconditional and conditional reliability indexes. A state-of-the-practice case of risks posed by tunneling-induced settlement to buildings is explored in-depth to demonstrate and evaluate the computational efficiency of the proposed framework.
Researchers and practitioners have recently proposed many Microservices Architecture (MSA) patterns and strategies covering various aspects of microservices system life cycle, such as service design and security. However, selecting and implementing these patterns and strategies can entail various challenges for microservices practitioners. To this end, this study proposes decision models for selecting patterns and strategies covering four MSA design areas: application decomposition into microservices, microservices security, microservices communication, and service discovery. We used peer-reviewed and grey literature to identify the patterns, strategies, and quality attributes for creating these decision models. To evaluate the familiarity, understandability, completeness, and usefulness of the decision models, we conducted semi-structured interviews with 24 microservices practitioners from 12 countries across five continents. Our evaluation results show that the practitioners found the decision models as an effective guide to select microservices patterns and strategies.
Dialogue systems are a popular Natural Language Processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning-based due to the outstanding performance. In this survey, we mainly focus on the deep learning-based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present in the area of dialogue systems and dialogue-related tasks, extensively covering the popular frameworks, topics, and datasets.
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.
In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed.
Nowadays, recommender systems are present in many daily activities such as online shopping, browsing social networks, etc. Given the rising demand for reinvigoration of the tourist industry through information technology, recommenders have been included into tourism websites such as Expedia, Booking or Tripadvisor, among others. Furthermore, the amount of scientific papers related to recommender systems for tourism is on solid and continuous growth since 2004. Much of this growth is due to social networks that, besides to offer researchers the possibility of using a great mass of available and constantly updated data, they also enable the recommendation systems to become more personalised, effective and natural. This paper reviews and analyses many research publications focusing on tourism recommender systems that use social networks in their projects. We detail their main characteristics, like which social networks are exploited, which data is extracted, the applied recommendation techniques, the methods of evaluation, etc. Through a comprehensive literature review, we aim to collaborate with the future recommender systems, by giving some clear classifications and descriptions of the current tourism recommender systems.
The goal in the NER task is to classify proper nouns of a text into classes such as person, location, and organization. This is an important preprocessing step in many NLP tasks such as question-answering and summarization. Although many research studies have been conducted in this area in English and the state-of-the-art NER systems have reached performances of higher than 90 percent in terms of F1 measure, there are very few research studies for this task in Persian. One of the main important causes of this may be the lack of a standard Persian NER dataset to train and test NER systems. In this research we create a standard, big-enough tagged Persian NER dataset which will be distributed for free for research purposes. In order to construct such a standard dataset, we studied standard NER datasets which are constructed for English researches and found out that almost all of these datasets are constructed using news texts. So we collected documents from ten news websites. Later, in order to provide annotators with some guidelines to tag these documents, after studying guidelines used for constructing CoNLL and MUC standard English datasets, we set our own guidelines considering the Persian linguistic rules.